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DETERMINATION OF THIN-WALLED CYLINDRICAL SHELLS STABILITY
A. Crnjac & P. Crnjac

(Recived 30.05.1990, revised 25.10.1990.)

1. Introduction. Shells are used either as independent elements or elements
forming part of modern structures in all industrial fields. Shell load is dependent
upon the loss of stability. For this reason special attention is paid to the prob-
lem of stability. During the last fifty years, a great many publications have been
issued dealing with the stability of shells. The research results vary a great deal
as mathematical problems, nonhomogeneity and anisotropy of material, inaccuracy
of manufacture, in short, shell imperfection, cause the actual conditions to con-
siderably differ from theoretical computations. Because of this, experiments are
sometimes the only way for assessing the real state in the shell. The present paper
shows the experimental test results of cylindrical shells compared with the theoret-
ical computations. On the basis of such results a unique method for determining
the critical force of cylindrical shells within both, the elastic and plastic ranges, is
given without considering the factor of imperfection a.

2. Material, dimensions and manufacture of shells. Shells have been
made from low-carbon 0.4, 0.5 and 0.6 mm-thick sheet steel suitable for plastic
deformation with diameters ranging from D = 200, 250, 300, 350, 400, 500, 550,

600, 650, 700, 750, 800, 850, 900, 950, to 1000mm. Manufactured have been five
samples per each diameter.

According to classical theory critical load of axially loaded cylindrical shell

does not depend on its length. The tests have, nevertheless, shown that the shell
length should be within the limits of

0.75D < L < 15D (1)
where D is shell diameter and L shell length. With shells shorter than 0.75D,

boundary disturbances had an influence on the occurrence of critical force, whereas
those longer than 15D behaved as tubular bars.

On hand of the limited size of machines shell lengths as follows have been
chosen:
L=l (2)

Used for the manufacture of both, shells and pots has been the deep drawing
procedure.
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It is known that plastic deformations may hamper the physical properties of
material and that through thermal treatment original state can be reestablished.

The results of tearing tests performed on test tubes cut from thermally treated
pot have shown that physical properties of material have regained their normal
limits and nearly reached the values the material had prior to deep drawing. The
bottom has been cut from the pot on a special machine as well as the excess of
material on the other side. As all interior local stresses resulting from plastic
deformations have been destroyed through annealling, the shell maintained the
same cylindrical shape after cutting as the original pot.

3. Shell test. The shell has been put between two massive plates so as to
exclude any possibility of the plate to bend because of the axial load. Shell shape
is shown in Fig. 1. The cylindrical part of plate D, with a diameter slightly larger
than shell diameter has a centering function and at the same time it also creates
the stiffness of the shell thus preventing the influence of boundary disturbances.
Plate 1s of simple shape and is very practical for easy mounting and dismantling.
Fig. 2 illustrates the shell ready for test.
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D. = D + 0.156 — diameter of cylindrical part of plate
D, = D — § — diameter of conical part of plate

D — shell interior diameter

§ — shell wall thickness

L — shell length

In order to smooth out any possible nonparallelism between shell edges an
articulated insert has been placed between the press plunger and the upper plate.
Shell has been loaded with gradually increasing compression force. Throughout the
test we have surveyed the shell surface in order to notice any changes in shape.

Deformations appeared on the shell after a particular load has been applied.
With shells of larger diameters such deformations occurred in the form of a net
of rhomboids. This happens instantaneously resulting in the establishment of a
temporary state of balance in the shell. We shall call this state the UNSTABLE
state and the force causing it the CRITICAL force.The state of the shell till the
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the appearance of the critical force shall be called the STABLE condition. With
the appearance of rhomboidal deformations the value of critical force has fallen by
about 4%. By gradual removal of load, a shift from rhomboidal to plane surface has
been noticed at a force lower by about 40% than the critical value. Gradual loading
repeated, the phenomenon reappears at a critical force being lower by about 5%
than the former one. With shells of smalller diameters the critical force has caused
local deformations which have not disappeared once the load being removad from
the shell.

4. Test results. Fig. 3 shows the measured values of critical forces Fe in the
form of curves.
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Although the shells have been carefully manufactured with only minimum de-
viations from geometrical shape, there are differences between the measured critical
forces with shells of the same dimensions. The differences are even up to 10%. In
Fig. 3 the full curve presents the lowest measured values and dotted curve the
highest values. In the area between these two curves are other measured values. In
continuation we shall use the lower curves.

Fig. 4 illustrates the corresponding critical stresses:

" Fer
Ocr = f)_vr_é’ (3)

where F.. is the lowest value of critical force among five different measured values
on shells having the same diameter and wall thickness.

Fig. 5 presents the critical stress curve o, in relation with the dimensionless
factor R/6. Given is also the ideal critical stress curve obtained through computa-
tion upon the classical theory [2]

eer = 0.6056/R. (4)
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5. Analysis of results. In Fig.5 considerable differences may be noticed
between the computed and measured values. The interdependence between these
values is expressed as

Ocr = Q0ccr (5)

where « is the diminuation factor which takes into account the shell iperfection, i.e.
inaccuracy of manufacture, anisotropy and nonhomogeneity of material, etc. We

shall call it the IMPERFECTION FACTOR. Its values

a'Cl'

(6)

o =
Ocer

are presented by the curve in Fig.6.

It is evident from Fig.6 that at values of R/§ > 450 the value of factor
changes in accordance with certain criteria which correspond to the equation

3 86.49 \°°
"‘(100+(R/5)) ‘

At the value of R/§ < 450 a bifurcation occurs where dotted curve signifies the value
of a factor if further computed upon the above formula (7), and the full curve, on
the other hand, the real value of factor a (a real) obtained through measurements.
This curve corresponds to the equation

0.362
Qpeal = 0.047 (E) .

()

. ®)
The same bifurcation is seen also in Fig.5 where the dotted curve presents the
critical stress o, computed upon the formula (5), and the full curve, however, the
measured and/or real critical stresses ocrreal.

The tests have shown that the bifurcation is the limit where at R/§ > 450
critical forces cause elastic deformations and at R/é < 450, on the other hand,
plastic deformations. We can see in Fig. 5 that within plastic range

(9)

Ocrreal < Ocr

and within elastic range
(10)

Ocrreal = Ocr-
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Test results naturally depend also upon the sort of material or upon the plastic
limit of material oy. In our case this value is

oy = 270 N/mm?. (11)

Write the relation between

B = 1/53— and v= JC;_real. (12)
Ccr v

In Fig.7 we see the curve presenting the dependence between the values 3 and 7.
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The bifurcation is at # = 1.58, i.e. at the point where the critical value reaches
Ocr = Ocrreal = 0.40y (13)

or at oer = 108 N/mm?.
At the value of § > 1.58 the curve follows the equation

y=1/p% (14)

Within the range of 8 < 1.58 there are two stress curves. The dotted curve means
the continuation of the expression ¥ = 1/8%, whereas the full curve is the one
obtained through measurements. The latter corresponds to the equation

+= 00888 12, (15)

On the basis of the above said we can conclude that without tests it is impossible
to make a reliable computation of cylindrical shell critical force. Shells with which
critical (buckling) stresses appear within the elastic range have different laws than
those shells where such stress appears Within the plastic range. This is because the
imperfection factor does not equally change within both ranges. We can, therefore,
have a uniform criterion for determining the critical stresses of shells of various
dimensions through computation only in case when such a criterion does not contain
the imperfection factor.
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Because of this we shall replace the abscissa 3 in Fig.7 by a factor called the
shell SLENDERNESS

Oy

(16)

g'= ;
Ocer
The experession (16) is a known value since oy has been determined on the basis
of tests carried out in a laboratory and o computed upon a classical method (4).
The value of occreal in the factor v has been obtained with tests (Fig.5). In this
way the curve in Fig. 8 has been plotted represanting the interdependence of factors
€ and ¥.

This relation may be written in the form of equation

1.516 (17
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In practice, however, the shell load ¢, must be lower than the critical stress

Ocrreal. 1f we decide that
Ocrreal _ 70v

A R (18)
we get a new curve presented in Fig.9. It can be expressed with the equation
1.01
1= O+ea? (19)

The tests have shown that with shells having the slenderness of ¢ > 1 critical load
occurs within the elastic range, with shells of 0.6 < € < 1 within elasto-plastic
range and at € < 0.6 within plastic range.

6. Effect of unreinforced circular cutouts on circular cylindrical
shells buckling under axial compression. In engineering structures an im-
portant role is played by the shells with cutouts.

This paper presents another imperfection — the cutout. A shell with cutout is
anisotropic. The cutout causes the displacement of stress trajectories thuscreating
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local deviation forces which, even at moderate loads, result in local deformations of
shell. It is, therefore, impossible to speak about the stability of shells with cutouts
in traditional sense in contrast with shells without cutouts. Exempt are only shells
with small cutouts behaving in the same manner as shells without cutouts, under
the influence of compression load. The results of experiments made furnish a proof

of this phenomenon.

7. Manufacture of cutout on shells. Cutouts on shells were made after

Fig. 10

annealing in special patterns (Fig. 10)

The pattern consisted of two parts: inner part having the outer radius equal
to shell interior radius, and outer part with radius identical to shell outer radius.
Both parts had identical cutouts. The shell was fixed between these two parts and
the cutout on the shell was cut over the hole on the pattern. After dismantling,

the shell with cutout retained the same geometrical shape.
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8. Test of shell with cutout. The same testing procedure has been applied
as with shells without cutouts. Upon axial compression load the cutout on the shell

Fig. 11
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acts as a concentrator of stress. The larger the cutout radius the higher the concen-
tration of stress around the cutout and the bigger the deformation. The variations
in deformations have been monitored by means of 0.01 precision comparators po-
sitioned at several points (Fig.11). On the basis of the reaction of comparators,
the relief of deformations could have been established, especially at the beginning
when it was impossible to notice them with the naked eye.

b

N o

—E-— —— -

o

AN

Fig. 15

The tests showed that shells with minor cutouts behaved in the same way as
shells without cutouts. At a particular compression force an instantaneous change
of the entire plane surface of shell into rhomboidal net was noticed. This compres-
sion force shall be called the CRITICAL force.
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Shells with larger cutouts behaved differently. The first deformations, appear-
ing as hardly visible bulges, occurred on either side of the cutout (Fig. 12) registered
by the comparators 1 and 2. Higher load applied causes an increase in bulges and
depressions at points 3 and 4, and later also at 10 and 12. Even the first unsym-
metrical deformations result in higher shell imperfection and, as a consequence, in
considerable diminishing of shell allowable load.

Through further increase in load the bulges are transformed in two semirhom-
boids (Fig.13) and later, when even higher load is applied, they change into one
(Fig. 14). Finally, with the load still increasing, a big deformation occurs resulting
in the fracture of the shell (Fig.15 and 16).
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9. Test results. Five samples per each shell of the same dimensions and
with identical cutouts were subjected to tests. Despite the fact that the shells
were carefully manufactured the values of critical forces differ for up to 10%. As
an example, the values of critical forces for the shell with ® = 300 mm and wall
thickness § = 0.5 mm, depending upon the cutout radius r, are presented in Fig. 17.
The upper (dotted) curve shows the upper values and the lower (full) curve the lower
values. The other three results lie between these curves. In continuation of the text
in this paper only the lower curves will be presented.

Fig. 18, 19 and 20 show the results of the measured critical forces Fe., for shells
of various dimensions, depending upon the radius r. The curve in Fig. 18 presents
the results of shells with wall thickness of § = 0.4mm, in Fig.19 § = 0.5 mm and
in Fig.20 6 = 0.6 mm.

If dimensionless factor 7 = 0cro/Fcrreal 18 put on the ordinate and € = r/R on
the abscissa, where

Ocro = Fero - Ag — critical stress in shell with cutout
Ay — surface of cross-section over cutout

Ocrreal — real critical stress computed by the formula 12, we get a uniform
curve for all shells in Fig. 21.
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From the analysis of presented curves a conculusion as follows may be made:

— Shell with a minor cutout behaves as shell without one. Maximum radius of
cutout at which the shell behaves as a shell without cutout varies for different
shell radii. The larger the shell radii the larger the radius of cutout. Experi-
ments have shown that as a limit value at which the shell with cutout behaves
as a shell without it, the relation

P
— =10.02
7 028 (20)

may be taken. Consequently, with shells of radius r < 0.028 R the critical force
is the same as with shells without cutout. When the load reaches the value of
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critical force the same rhomboidal net appears over the entire shell surface as
with shells without cutouts. It is to conculude that, the concentration around
the cutout is so low that it does not cause the modification of the relief around
the cutout.

— With shells having the cutout of 7 > 0.028 R, the critical force curve is initially
very steep, with an increasing cutout radius, to reach later on a more slightly
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inclined position. On the basis of data already known, obtained with the
tests made, we can determine, upon the method of the smallest quadrants, a
common equation of the curve for all shells (Fig. 21)

g = 0 IQTE A0 (21)

The tests have shown that critical force on shells of various dimensions causes
the deformations as follows (Fig. 21):
— within the range of r < 0.028 R the shell gets a rhomboidal relief ovar the entire
surface, the same as with shell without cutout

— within the range of 0.028R < r < 0.05R the shell obtains a rhomboidal relif
over the entire surface, and deformations around the cutout,

— within the range of 0.05R < r < 0.11R the shell obtains a local rhomboidal
relief, and marked deformations around the cutout,

—- within the range of » > 0.11R deformations appear only around the cutout
(Fig. 15 and 16).

10. Conclusion. The experiments have proved that the curve in Fig.8
corresponds to all shells subjected to tests. We can logically assume this curve to
be generally valid for any other shell dimensions. What is necessary is to compute
v from (17) and then the real critical stress from (12) from which critical force
may be obtained. The safety factor 1.5 taken into account, the curve in Fig.9 is
obtained or the expression (19), on the basis of which we can directly compute the
allowable load o, and consequently also the compression force with which the shell
may still be loaded.

In this way we would avoid the imperfection factor o and the difficulties related
to its determination within both, the elastic and plastic ranges. Subsequent tests
should confirm the correcteness of this assumption.

Fig.22 shows the comparison of the curve CRNJAC (Fig.8) with the results
of the numerouses authors. The curve in Fig. 8 presents the lowest measured values
of experiments.
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STABILITATSBESTIMMUNG VON DUNNWANDIGEN
ZYLINDRISCHEN SCHALEN

In diesem Beitrag wurde bewiesen, dass sich die Einwirkung der Un-
vollstandigkeit der zylindrischen Schalen im Bereich der Elastizitat von jener im
Bereich der Plastizitat unterscheidet.

Deshalb ist die bisherige auf Unvolistandigkeitsfaktor a basierende Art fur die
Bestimmung der kritischen Kraft unzuverlassig.

Aufgrund der Experimente, die an einer grosseren Zahl der Muster ver-
schiedener Dimensionen durchgefiihrt wurden, wird die einzigartige Methode
zur Bestimmung der kritischen Kraft der zylindrischen Schalen, ohne den Un-
vollstandigkeitsfaktor a zu bertucksichtigen, angewandt.

In diesem Artikel ist die einzigartige Methode zur Berechnung der kriti-
schen Kraft bzw. der kritischen Spannung fur die Schalen mit Rundausschnitt ver-
schiedener Dimensionen angefuhrt.

Da das Material der Schalen bzw. die Plastizitatsgrenze o, bekannt ist, wird
zuerst die kritische Spannung der Schale ohne Ausschnitt ocrreal aus der Gleichung
(15) bzw. aufgrund des Bildes 8 errechnet. Dann wird bei bekanntem Verhaltnis
r/R die entsprechende kritische Spannung ocr, bzw. die kritische Kraft F.., der
Schale mit Ausschnitt aufgrund des Bildes 21 bzw. aus der Gleichung (21) errechnet.
Da diese Methode an einer grosseren Zahl der Muster angewandt wurde, ist zu
erwarten, dass folgende Untersuchungen ahnliche Ergebnisse gaben werden.

ODREDIVANJE STABILNOSTI CILINDRICKIH LJUSKI
SA TANKIM ZIDOM

U ovom radu je dokazano, da je uticaj imperfekcije cilindrickih ljuski razliéit
u podruéju elasti¢nosti od onoga u podruéju plasti¢nosti. Radi toga je nepouzdan
dosadasnji naéin odredivanja kriticne sile, koji bazira na faktoru imperfekcije a.

Na osnovu eksperimenata na velikom broju uzoraka raznih dimenzija, daje se
jedinstvena metoda za odredivanje kriti¢ne sile cilindrickih ljuski, ne uzimajuéi u
obzir faktor imperfekcije a.

U ovom ¢lanku je prikazana jedinstvena metoda za izra¢unavanje kriticne sile
odnosno kritiénog napona, za ljuske sa okruglim otvorom razli¢itih dimenzija.

Posto je poznat material ljuske odnosno granica plastiénosti oy, najprije
izracunamo iz jednadzbe (15), odnosno iz slike 8, kriti¢ni napon ljuske bez otvora
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Ocrreal. Pri poznatom odnosu r/R zatim izraéunamo iz sl. 21, odnosno jednadzbe
21, odgovarajuéi kritiéni napon o, odnosno kriti¢nu silu Fgpo ljuske sa otvorom.

Posto ova metoda bazira na veéem broju uzoraka, moze se oéekivati, da ée dalja
ispitivanja dati sli¢ne rezultate.

Ante Crnjac

Peter Crnjac
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