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Introduction. We shall show in this work general procedure for the solutions
of transonic two dimensional flows, which can be sufficiently good described with
isentropic flow equation. It is accepted that isentropic flow assumption is valid
when Mach number does not exceed 1.3, (M, < 1.3). With this limitation it is

ensured that shocks are of the weak intensity.

When the flow equations are in the conservative form, it is necessary to add
mass in the supersonic part of flow domain, in order to obtain convergent and stable
solution. Here we have applied, so called, artificial compressibility method. With
this method density should be modified in the supersonic flow domain.

Calculation of transonic flows around biconvex airfoil, and around axi-
symmetric body of revolution, obtained from biconvex airfoil, are presented.

Governing equations and boundary conditions. Equations which describes
two dimensional, inviscid, isentropic flow are given in [4] or in [1]:
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where all velocities are nondimensionalized with unperturbed flow velocity, at in-
finity. Lengths are divided with some chosen length, while densities are divided
with unperturbed density. Axi-symmetric flow equations are obtained for m =1,
and two dimensional when parameter is zero, m = 0.

The existence of the potential requires that the flow be irrotational:
o ~egz=l @

Free stream boundary conditions can be specified:

T,y — Foo, U1, vi—=0, (3)
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while the impermeability of the body is defined with:
V-i=0. (4)

Equations (1) and (2) are conservative form of flow equations. If, by definition,
scalar quantity ® is introduced:

0® 0o
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it is possible to reduce problem from two partial differential equations of the first
order to one of the second order (1) and (2):
(me(I)x )x + (ym Q(I’y)y =0
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This partial differential equation is reduced to Laplace equation when the free
stream Mach number is My, = 0. Pressure coefficient, Cp, around airfoil can be
calculated when the densities, p are known:

2
kM2

Cp = ——(e" - 1),

local Mach number can be determined from the known densities on the computa-
tional mesh nodes, using formulae:

M2 — 2 (1+"—;1M§o _1> |

k-1 or-1

Substituting 1 instead of M, g* is obtained:

1-+~K'—;'-1M2 1/(5—1)
K =( 14 51 )

by direct substitution in the equation for Cy, C, is obtained. All values of Cp which
are less than CJ correspond to supersonic part of the flow domain.

Grid generation. Computational mesh around biconvex symmetric, as well as
around corresponding body of revolution can be easily simplified. Also the way of
boundary conditions specification is simplified. We have adopted, for this purpose,
complex mapping of bump above z axis to ¢ axis without bump, [2], figure (1),
which is defined:

b iyl {1_ (1_2)"’(”'“’}_1. (6)
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Figure 1: Calculation field in computational and physical plane

Real and imaginary part of the ¢ = £(z,y) +in(z,y) are functions of the coordinate
of the point in the z-plane. Transformation of partial derivatives of the equation
(5) is specified in the book [3]:

¢, = QEE&' + @pns

Py = ey + Pyny

B, = Deel2 + 2®¢n et + Ppnn2 + Pebaz + PyNae (7)

Py = ‘I’fffg + 2®¢n&yny + Pon ’73 + Pelyy + By

®zy = Pecbaly + Pen(Eany + Eyne) + Bunnztly + Belay + Pollay

J =&y — &z

Mapping function is known function given with equation (6),
(=€é+inp=w(z),

using the rules for derivative calculation, it is easily possible to determine derivatives
of mapping function given with equation (7):

d¢ = d€ + idnp = vw'(z)dz (8)
d%¢ = d%¢ + id%n = w''(z)d2>. (9)
Dividing equation (8) with dz, and with 9y it is obtained:

& + iﬂa: = wl(z)
& +iny = iw'(2). (10)

Dividing equation (9) with dz?, dy? and with 0zdy second derivatives of the map-
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ping function are obtained:

§zz + e = wu(z) )
§yy +inyy = —w"(z),
fry + iTh‘y = iw”(z) . (11)
After the separation of the real and imaginary part of the functions given
with the equations (10) and (11) mapping functions are finally obtained. Analytic

expressions for the first and for the second derivative of the mapping function w(z)
1s given below:

e} = (5)2 (1-2)¥* (12)
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Calculation of flow characteristics are done in transformed coordinate system,
so it 1s necessary to determine corresponding points in the physical coordinate
system which correspond to nodes of the computational mesh. That is equivalent
to find inverse transformation of the transformation (6). For the flows around
biconvex airfoil it is possible to find analytic expression for the inverse mapping
function, by which can be coordinates in the z-plane obtained which corresponds
to points in the {-plane:

z=a{1— (l—ﬁ)(bam}_l. (14)

Transformed form of equations. Equation (5) after general coordinate trans-
formation, with which physical domain (z,y) is transformed in the computa-
tional domain (£,7), and after substitution of the ®; = ®¢£; + ®,7, and the
¢, = &£ + P,ny and after grouping of members derived with £ and 7 is trans-

formed to:
U |4
(ymej) +(ym97) =0,
4 n

o 1/(x—-1)
where U and V are the contravariant velocity components given by:
U=A19; + A:9,, V = A% + A3®,, (16)

while coefficients are:
A =€ +£3: Ay =&t +&yny, As= 7?:+7]:,

7 = (&) (17)

8(3, y) = E.z"?y o Ey"?z .
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We have solved formerly formulated problem with finite difference method, as it is
described, for example, in [5]-[10].

Discretization of the flow equations. Discretization of the equation (15) can
be done using the following s¢gheme:

5-(!’ QU) +E-(———ym"v) sl (18)
I Jivipg I Jijeye

In the equation (18) contravariant component of the velocity are calculated:

Uit1/2,; = Arig1/2,i(Rit1,j — 2ij)/(AL)
+ 1 A2i+1/2,j(®Rit1,j+1 — Pigr,5-1 + Pijj+1 — ®;;-1)/(An),
Vii+1/2 = 3 A2 j+172(Pit1,+1 — Bicrj41 + Rigr,j — ®;_1,;)/(Af)
+ Asij+1/2(®ij+1 — i)/ (An), (19)
values on the half mesh intervals (t.e. i + 1/2 and j + 1/2) are obtained by simply
averaging values of A’s, given with equation (17), in neighborhood nodes of the

computational grid. Such discretization is suitable for completely subsonic flow.
But it is necessary to apply concept of artificial compressibility [9] for the supersonic

flow domain:
a1 60 eV
[ (5) ] 75 () ™ e
i+1/2,j I Jij+12

where g is defined by:

0i = (1 = Vitk,j)0i41/2,j + Vith,jQi+2k—1/2,5 (21)
while: 0. U 0
) % . >
i { i (22)
5 U,'+1/2.j <0

Artificial compressibility coefficient is obtained by expression:

v = max [o,c1 (1— 341_2)] : (23)

where C; is constant close to unity for small supersonic speed, and is increased with
rise of the supersonic speeds. With such defined scheme is possible to calculate
completely subsonic flow problems, as well as flows with supersonic pockets.

Calculation procedure. There are various procedure for the solution of the
obtained equations. We have used, so called AF2 scheme developed by Holst and
Ballhaus, [8], [10]. An AF scheme, as most others, for the full potential equation

my be written:
NC" +wL®" =0, (24)

for relaxation problem governed by partial differential equation of the form L® = 0,
where L is a differential operator. The w is a relaxation parameter, C" is the
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correction term (®"*! — @"), while L®" represents the residual because partial
differential equation is not satisfied with approximate solution. With N is assigned
operator which determines the iteration method. In AF schemes, N represents the
product of two or more operators:

N:-Nl'Ng.

The operators Ny and Ny must be selected so that their product approximates L,
only simple matrix operations are allowed, and overall scheme should be stable.
AF2 scheme developed in (8], [10] has the form:

— N oA A — = 3l
aNC}sz—[a—rS,, (y 5 3) aén—éeéi(y JAI) b C,-'fj.
ii—1/2 i+1/2,j

(25)
The o is free parameter which may be interpreted as (At)~!. A sequence of alphas
1s used during calculations in order to reduce both high and low frequency errors
in the solution.

AF2 scheme given with equation (25) is implemented in two steps:

= (Y™ eAs no_ n
[a — 6,} ( J )‘_,j_1/2} i = GWL¢"]J' )

o — _ A — ” -
oh e (%) w]aen @
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where f['; is an iutermediate result, required by numerical scheme, and is obtained
in the first step by solution of two diagonal system of equations. In the second step
correction term is calculated by the solution of tridiagonal system of equations. For
this numerical routine, the sweep direction required is outward away from the body
n step 1 and inward for the step 2. There is no limit for this scheme for sweep
direction due to the flow direction.

After application of the operator N; on the first of the equations (26) the
following system of two diagonal equations are obtained:

y" [ eAs y" [ 0A;3 i
at (_) =l (-—) i = awldl;,  (27)
An\ J i,j—llz] T Anp\ J ij+1/2 e "

where A?] = 0.5 x (T]j+1 = T]j_l).

Application of the N, operator on the second of equation (26) the following
tridiagonal system of equations are obtained:

a:'c?_1 + b;Cy + ¢ ,'n+1 =a;, (28)

where the coefficients in above equation are:

o Bieyy YA
R | SN I
A 6;‘ i—1/2,
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Problem which arises in calculation of coefficients for the line n = 0, which corre-
sponds to streamlined body, can be solved by reflection. So the needed values below
the lowest computational grid line can be taken from the line just above these line

(j = 2). Fully developed operator L®7;, equation (20), is given with:

A =412 —§-1/2 An =412 — 1-12,

o) e ()
1 _s, (U
AL 1T\ T /4, J ] -1y,

[,
| e § e s (o =0 (29)
A i J +1/2 J ]9

in the last equation we have avoided subscripts (¢, j) in all terms.

There are three parameters with which is possible to control convergence of
computational procedure: w, a i Cy, their careful specification, as well as the way
of variation of parameter « can significantly reduce the needed computational time.

Computed Results. Two solutions are here presented. First is the solution of
transonic flow around biconvex 20% thick airfoil, at M = 0.8, and at the incidence
angle o = 0°. Second solution is for axi-symmetrical problem, for which body is
obtained by rotation of biconvex airfoil. The flow parameters are the same as for
the airfoil.
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tr RS !

Figure 2: Convergence parameter cycle
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Cumulative error
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Figure 3: Convergence history for axi-symmetric body

2D flow
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Figure 4: Pressure coefficient C,, for the 2-D flow
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Axy - symmetric flow

M=04 Vi=0l

o4 —
[«

al

-al
-02:l
=03 —
-a4 -
-ns_
=05 —
-aT -
-M_

TS S S LR

-1 Q8604 015 022 aszs 0437 1288 L8T2
a1

Figure 5: Pressure coefficient C', for axi-symmetric flow

Calculations are done on the (40 x 20) computational grid where only 20 cal-
culation points fall on the body. Convergence parameter a is cyclically varied as
it is shown on the figure 2. Convergence history is displayed on the next figure
3. Computational error is defined as the sum of absolute values of the correction

terms:
| N m
" = E IC;1 -
i,j

Pressure coefficient for twodimensional flow for the line n = 0 is given on the
figure 4, while with figure 5 is represented pressure coefficient distribution for the

axi-symmetric body.
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VICYUCJIEHUE 2-11 CBEPX3BYKOBOI'O OBTEKAHUSA
BOKPYI" OCECUMMETPUYECKUX TEJI

CBepX3ByKOBOE OOTEKAHME, OMUCHIBAIOMEEC MOTEHIIMAIOM CKOPOCTH MJIA OBY-
MCPHEIX 1 OCECHMMETPIYeCKUX OOTEKAaHUM, PEUIEHO METOLOM KOHEYHEIX PasHOCTER.
OTOT paspaGOTAHHHIA METOL OTHOCHTCH K CUMMETPUIECKOMY JIMH3006pasHOMY a3po-
npoduitio, a TaK&e K 0CECHMMETPUIECKOMY Teqy, T0J1y9aeMOMY B pe3yJibTaTe Bpalle-
HUA adpoIpoQUIIa BOKPYT' CBOEH MPONOIBHOM OCH CUMMETPHUH. [IpoBnema pemanace
Ha OCHOBC KOHCYHEIX Pa3HOCTEM C TeM, YTO CTaCM/IM3ALMA MCIMCIEHMA OCYmECT-
BJICHA TIPMMECHCHHWEM MCKYCCTBEHHOM CKMMaeMOCTH. PU3MdecKasd 06JIacThb oGTEKa-
HUA T€pecHATa B 00/IACTb MCHHMCIICHUA TaK, 9TO B3LYTHE, COOTBETCTBYIOMEE KOHTYpY
00TEKaeMOro Tesla, IEPECHATO HA MPAMYK JMHMIO B OGJIACTH MCIMCIICHIA. Me-
TOL PEWICHUA NPUHAMIERUT KJIacCy MPUGIMSUTEIbHHX (PakTopH3a i oriepaTopa,
TIpH TIOMOIM KOTOPOIO ONMCHBAETCA NaHHOE OGTEKAHWE; 3TO TAK HA3LIBACMEIA Ad
2 criocoC. TIpemocTaBifoTes B pacriopaxeHue AnarpaMMH pacripefeieHus Kos{du-
IIMCHTa NaBJICHMA T10 KOHTYpY Tejla, a Tak&ke AMAarpaMMa CXOMMMOCTH Mjf JaHHOIO
npUMepa.

PRORACUN 2-D TRANSONICNOG STRUJANJA
OKO OSNOSIMETRICNIH TELA

U radu je reseno transoni¢no strujanje opisano preko potencijala brzine za
dvodimenziona i osno simetri¢na strujanja metodom konaénih razlika. Razradeni
postupak je primenjen na simetri¢ni soéivasti aeroprofil 1 na osno simetri¢no telo
koje je dobijeno rotacijom aeroprofila oko svoje uzduzne ose simetrije. Problem
je resavan konaénim razlikama, dok je stabilizacija proradun izvréen primenom
vestacke kompresibilnosti. Fizicka oblast strujanja preslikana je u proracunsku
oblast tako da se ispupéenje koje odgovara konturi obstrujavanog tela preslikalo na
pravu liniju u proracunskoj oblasti. Postupak resavanja pripada klasi pribliznih
faktorizacija operatora kojim se opisuje ovakvo strujanje, poznatim pod imenom
AF2 postupak. Dati su dijagrami raspodele koeficijenta pritiska po konturi tela,
kao i dijagram konvergencije za dati primer.
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