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1. Introduction, equations of the ionised gas boundary layer. In-
vestigated in the paper is the flow of ionised gas, the corresponding equations of
the boundary layer of this flow being transformed into the so-called universal, i.e.
generalized form.

At high temperatures that are characteristical for the boundary layer in e.g.
supersonic flow around a body (missile, plane), it is well known that the gas (air)
first dissociates, which is followed by ionisation. The “homogeneous” gas becomes
a mixture containing positive particles — ions, negative particles — electrons, and
neutral particles — atoms, the resulting gas being referred to as the plasma. The
degree, or the ratio of ionisation (e;) of the plasma is determined by the ratio of
the electron concentration n., to the sum of the respective concentrations of ions
n; and atoms n,. This coefficient represents one of the principal characteristics of
the ionised gas.

At sufficiently high ionisation and recombination (three-particle, radiation,
etc.) rates, thermodynamic equilibrium of the concentrations of individual compo-
nents is estabilished in the plasma flow. In the conditions of full thermodynamic
(thermochemical) equilibrium, concentrations of individual components are related
by the well known [5] equation of Sah, i.e. the ionisation coefficient is a function of
temperature 7'.

Due to the ionisation the gas becomes electro-conductive. If the ionised gas
flows through magnetic field, the flow of electric current is set up, which inter-
acti gwith the external magnetic field of intensity B, (analogously to the electro-
conductive liquid) creates the so-called Lorentz force. In addition, due to the
electric current flowing through the gas, Joule heat is generated. These two effects
cause new terms to appear in the boundary layer equations of a electro-conductive
gas, i.e. plasma. This is why the equations of a laminary, steady, plane boundary
layer have the following form for the flow of ionised gas in the magnetic field in the
conditions of ideal ionisation [1]:
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with the corresponding boundary conditions:

y=p=0, h=hy aty=0; u— ue(z), h— he(z) aty— oo
u=uy(y), h=hy(v) atz=zy (2)

assuming that there is no external electric field, that the external magnetic field

with induction ﬁm is perpendicular to the submerged body contour, such that
Bme = 0, and By = By, that because of the relatively small thickness of the
boundary layer one may consider that By, = Bp(z), and that there is no internal
magnetic field.

The equation system (1) differs from, e.g. the equation system [4] for the
ideally-dissociated gas, because it contains the terms 0 BZ u and 0 B2 u? that char-
acterize the effects of magnetic field, i.e. the Lorentz force in the dynamic equation,
and the Joule heat in the energy equation.

The notation customary in the boundary layer theory has been used in the
system of equations (1) and (2), z and y representing the longitudinal and lateral
coordinates, respectively, u(z,y) — the longitudinal projection of velocity in the
boundary layer, v(z,y) — the lateral projection, h — enthalpy, p — dynamic
viscosity, p — density, Pr — Prandtl number, p — pressure, and ¢ — electro-
conductivity of the plasma. The indices refer to as follows: w — submerged body
wall, 0 — distribution of the physical quantities over a boundary layer cross-section
defined by = = z,.

Electro-conductivity of the plasma o is in general a variable quantity depending
upon temperature, i.e. upon enthalpy. However, in this paper it is assumed that
analogously to the magnetic field intensity By, ¢ = o(z) (or o = const, the
solutions being valid for small temperature shanges in the ionised gas boundary
layer).

Since at the external boundary of the boundary layer u(z,y) — u.(z) and
(0u/8y). — 0, the dynamic equation at this boundary reduces to:

du dp
peﬂe?j - “'E = aB.?nUC.
In on the basis of this equation pressure is excluded from the system of equations
(1), then the system of equations for the ionised gas boundary layer may be written
in the form:

o o, ou Bu_ du O (0w o,
~a—m(pu) + -a—y(pv) =0 puzs Py = Pty o By (pay) + 0B, (ue — u);
oh . Oh _ du, ou\® 0 ( p oh - o
> +pv8y =T ¥ “(a;;) i Oy (Pr By) okl g =il

with unchanged boundary conditions (2).

2. Variable Transformation, the Impulse Equation. When considering
the problem of ionised gas flow, in analogy with the dissociated gas flow, instead
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of physical coordinates z,y one introduces new transformations in the form of

variables:
L' i y
f Pwbw dz;  2(z,y) = — f pdy, ()
0 0

Pn

S(.’D) = 1
Pnkbin

where p, and p, represent known values of density and the coefficient of dynamic
viscosity. Clearly, the values p, and p, may be taken as p, and pn.

Introducing the stream function ¥(z,y) by way of relations:
d¢ ~  pnpn [ 0z P ) 8y

- .3 O I N, .. - 4

“= %z ¥ T Yoz +vpn Os (4)

whereby the continuity equation is identically satisfied, the initial system of equa-
tions (1) is transformed into the form:

W AN e, e 8 (gl0W 0B?npn#n( _Qab_).
0z 9s0z  0s 022 p ° ds T o (N622)+ 2 potux® Bayd
0y oh _ 99 dh _ _pe ducdy ~(6"’¢)"’ a(ﬁ@) (5)
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with the corresponding boundary conditions:
=a—¢:0, homilhe st a= -(?-Eb-—rue(z), h — he(z) atz— o0;
0z 0z
9y
B = ug(z), h=hy(z) ats=s,. (6)

The nondimensional function N and Prandtl number Pr are determined by the
equations:

N = = 3 N=1 at z=0;
Puw Pw
N PeHe N i |
N — —— = N(s) at z— oo; Py = ; T
Nl X @
By means of the variables (3), and assuming that ¢ = o(z), applying the stan-
dard procedure from the incompressible gas flow, one can derive the corresponding
impulse equation, writing it down in one of the following three forms:

d7** Fm . d_f- o ‘UICF u'! A Eﬂu‘;

ooy e g d it ber < B (8)

In the above equations, and in the remaining text, the prime (’) symbol denotes
derivation with respect to the variable s.

In deriving the impulse equation, we have introduced the parameter of the
form f, and the following customary characteristic quantities and functions of the
boundary layer:
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In the above relations, the conditional impulse displacement thickness A*(s),
the impulse loss thickness A**(s), and the conditional thickness A}(s) are defined
by the expressions:

A"'(s):/o (pe/p — ufue) dz; A"(s):‘/Ooo(u/ue)(l—u/u,)dz;
8i0) = [ (oulp1 - ufue) d

whereas the magnetic parameter g(s) is determined by the expression:
2
os)=Nz*;, N=Piry F_-IBm (10)
PuwHw Pe
It should be stressed that the first equation of the system (5), in the case of
constant temperature (i.e. density and viscosity), and constant electro-conductivity
o, agrees in form with the boundary layer equation for an electro-conductive liquid
[2]. Since, however, the variables (3), introduced under these conditions, reduce
to s(z) = z and z(z,y) = y, the first equation of the system fully reduces to
the boundary layer equation for an electro-conductive liquid. Therefore, generally
speaking, the transformations (3) and (4) convert the boundary layer equations for
compressible fluids into the form indentical with the form of the equation for the
corresponding boundary layer of incompressible fluid.

Pursuing further the idea developed in [3], one more variable transformation is
applied to the consideration of the problem of plasma flow in the boundary layer:

s -1/2
s=s5; 7(sz2)=ubl? (aunf ub=1 ds) z; (11)
0

] 149 -
¥(s,2) = Ui'm(avn/ gt db‘) ¢(s,m); h(s,z) = hy -h(s,n); hy = const.,
0

where 7(s,z) is the new non-dimensional lateral coordinate, ¢(s,n) is non-
dimensional stream function, h is non-dimensional enthalpy, h is total enthalpy
(stagnation enthalpy) in the outer flow around the submerged body, and a and &
are arbitrary constants.

The above introduced boundary layer thicknesses (9) make it possible to write
the new transformation in a more convenient form:

-

. B, _ Ue(s)A™(s) ;
1](3,2) - Au(s)zi ¢(s!z) - B(S) ‘P(S:n): (11 )
while the individual characteristic quantities of the boundary layer may be written
as:
"‘ r A d(0p/0 d?
A B n=0 1

d(n/B) an?

=0
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The quantities A, A; and B in the expressions (12) replace the integrals:

e e '350 oope 330
A=/ (3—-—>d; A =/ -—(1——— dn;
o 1A g5 Gy AL AN o S an ) ™"

B f IR iy 13)
o On an) " (

and are assumed to be continuous functions of the coordinate s.
In addition, by means of the transformations (11) one easily arrives at the

relation: f 414

au, / b—1

o Bl fe el (14)
B2 LA R

which plays the decisive role in the application of the so-called universal solutions
to the solution of each concrete problem of the plasma boundary layer. The char-
acteristic function Fy, of the boundary layer reads now:

2u.B'f
Fp = aB? = bf + ——. (15)
¥ u'B

Using the transformations (11), the system of equations (5) is, after a somewhat
involved algebra, reduced to the form:

g (75) i (- (30) ]+ 85 (- 57)

an\ on? 282 S061]2 B2| p dn B2 p \'  9ny
_ U™ (?9_0_3290 _2923_22). (16)
~ B? \Ondsdnp 08son?)’
8 (NOr\ aB2+(2-b)f 8h 2f p. Op - (82p\?
on (Pr 61}) + 282 "0617 " B? p oy +2KN(6172)
egacl (% ) wI" (Bpth _Dpoh)
B? p dn \ 07 ~ B2 \@dnds 09sodn)’
with boundary conditions:
Jy 3 Oy o
=-LX =0, h=h, atn=0; — —1, h—=h.=1—-k atn—oo;
P 7= 0 n— 00
¢ =1wo(m), h=ho(n) ats=s, (17)

In the energy equation of the system (16), and in the boundary conditions
(17), one can notice the quantity:

K= fie=ug /b, (18)

which, indentically to the case of dissociated gas, may be termed local parameter
of gas compressibility. This parameter is a function of the coordinate s, specified
in advance.
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In addition, the system of equations (16) contains the external velocity u.(s),
and the solution shall therefore depend upon the concrete distribution of this ve-
locity, and, certainly, also upon a number of parameters and distributions, such
as Pr, N, p./p, that should be additionally determined. The system of equations
may however be made independent of the external velocity uc(s), that is it may be
brought into a universal form, which is the aim of this study.

3. Universalisation of the Equations of the Problem Under Consid-
eration. Further analysis of the system of equations (16) reveals that the variable
s enters explicitly only the right-hand side of these equations, and the last boundary
condition. The quantities x, f, and g in these equations, determined by the equal-
ities (18), (8), and (10), may in analogy with incompressible fluid [2] be termed
“similarity parameters”, and included into the “similarity variables”. Namely, if
the parameters «, f, and g are considered as independent variables, then in order
to “universalise” the equations (5) of the plasma boundary layer, one should apply
the similarity transformations in the form:

B 5 * _ _
w62 = g o2) = Emp(nm f,0); hs,2) = mak(n,r, f,0), (19)

whereby the variable s does not enter the functions ¢ and h explicitly, but by way
of parameters «, f, and g, which can be seen by comparing with the equation (11).

Having calculated (by means of transformation (19)) the expressions for indi-
vidual derivatives that enter the left and right hand sides of the basic system of
equations (5), we obtain:

i(ﬁazw) aB’+ (2-b)f 8%
on \" on? 9Bz Y op?

Fd &_(3_90)2] 9 pe _%)
B, \ 8n +B2p(1 dn
T 2 2 2 2
_ uZ K@so@so 3¢§_¢)R,+(3_90390 _?_te%)f,

B2 6_1)37]3& " 0k on? onondf Of on?

¢ azw__%éif) ]
+(317 dndg  Og On? 4 i (20)
4 (_fi@_ﬁ)JraBM?—b)f Oh _ 251 pe Oy

a1 \ Pron 2B2 "oy B? p o
2 2
(7))
U Z** [(0p 8h  0p 6h\ 8¢ Oh 0y O\ .,
T
8¢ 6h  Op Oh\ ,
(525 - o))

The equations (20) do not satisfy the conditions of “generalized similarity”
since the terms u.Z**f' and u.Z**g’ on the respective right hand sides depend
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upon s, and can not be expressed in terms of the parameters f and g. While,
namely, the term u.Z**&’ may be written as:

e s =%l =0, (21)

the other two terms u.Z** f' and u.Z**¢', due to the relations f = ulLZ* u 2% =
Fr; g = NZ**, reduce to: )

U Z* f' = fFp + uou 2", u,Z**g = gFm + el B, (22)

and can not be expressed only in terms of f, g, and F, as they contain in other
terms (22) the quantity u(s). If index “1” is added to the parameters f and g, the
other terms in (22) may be interpreted as the following parameters:

f‘2 — ueuuzu2; ga = ueNquuZ (23)

€

the equations (22) being then:
UeZ"f{:.lem'i‘f% ueZ**gi=glFm + g2. (24)

The introduction of new variables f, and g2 into the function ¢ and the
nondimensional enthalpy h would give rise to the appearance of new products
(terms) in the equations (20), the later containing in accordance with the equations
analogous to (22) the following new variables fs and gs:

f3 — UE‘U”’Z“S; gz = uzN"Z“a, (25)

[

which are related by equations:
ueZ* fy = (f1 + 2Fn) f2 + f3; ueZ2** gy = (f1 + 2Fn)g2 + gs. (26)

Further repetition of the above procedure leads to the conclusion that the
variables introduced (the similarity parameters) satisfy general laws in accordance
with which they were created:

- dkue e - d*~IN i
fe =ug™ dsk z*, gk = u; LEE—_I-Z “ (k=12,...), (27)

whereby on the basis of (24) and (26) one may conclude that these parameters also
satisfy the following recurrent ordinary differential equations:

ueZ** fi = [(k = 1) f1 + kFnlfe + fet1 = Ok;
ueZ* gl = [(k = 1) fi + kFn]gk + gk41 = Gy; (k=195 (29)

The introduction of two infinite sets of parameters (27) and the compressibility
parameter (18) right from the beginning into the transformations (19), makes it
possible to obtain the equations of the plasma boundary layer in terms of the so-
called general similarity variables. If the following transformations are applied to
the system of equations (5):

B eA“ ’
n= K‘:Z; Y= = B 99[’73 E;(fk),(gk)];
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h=hy ke (fe),(ox);  (k=1,2,...), (29)
the later is transformed into the form:

0 (ﬁazap) +aBg+(2—b)f1 9%
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1 [2 dp 0L By (9;1) = (690 Oh 8¢ 571)]
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with corresponding boundary conditions:
dy s =
==—=0 h=h, = st. atnp=0;
© on cons n
I 1: Buf = .
817—»1, h—h.=1-k atn— oo; (31)
® = po(n); B:hO(U) at fy = Ky = const, h=fa=...=g =g2=...=0.

Obviously, by introducing the appropriate parameter sets, one obtains the
equations (30), which may be understood as a universal mathematical model of the
problem of ionised gas flow in the boundary layer. Namely, the dynamic system
(30) has the same form for every special case of the flow, since neither in the system
of equations, nor in the corresponding boundary conditions one finds the velocity
distribution u, at the external border of the bondary layer. System of equations
(30) is in this sense universal. Of course, it is expected that the quantitiy N and
the density ratio p./p are expressed in terms of the non-dimensional enthalpy, the
way it is done in similar flow problems. The characteristic boundary layer function
F,, is then expressed by:

D ft, OB & . BB
Fpn=aB%*-b +—( O — + G—). 32
a f1 B kgjokafk ’; kagk ( )

Concluding this considerations, it should be pointed out that in the case of
constant temperature, i.e. constant density and viscosity, and when B = const.,
the universal dynamic equation of the system (30) reduces to the boundary layer
equation for an electro-conductive liquid [6], with non-porous submerged body con-
tour.
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Since two sets of parameters appear on the right-hand sides of the system (30),
numerical solution of this system of universal equations is possible only when the
number of parameters is relatively low. Assuming that all the parameters, starting
with the second one, are zero, and neglecting the derivatives with respect to the
compressibility parameter k = f, and the magnetic parameter g;, that is if:

k#0;, f1#0; fo=fa=...=0; 8/0k=0,
g1#0;, go=ga=...=0; 08/8g1=0, (33)

then under these conditions the system (30) is simplified, to read in the three-
parameter, twice-localised approximation, as follows:

8 (0% aB?4+(2-b)fi 0%  fi [pe 9o\’ g1 Pe( Qf)
377(N3n2)+ 282 p3n2+§[?—(3n) ]+B?p e

_Fah (% d%p _ Oy 8290)
~ B \9nondfp 0fi on?

~ —_ 2 o 1 n ~ 2 2
9 (ﬂ_@ﬁ)+a8 +(2 b)flp@_gﬂ_&&@fum(a “0)

)

On \ Pr Oy 2B? dn  B? p On an?
2&91&%(3_90 e I i mel (éﬁf aﬁ _ 690 a_‘f_l_) (34)
B? p 0n\ dn T B2 \Ondf d8fion)’
(p:a—(’;zo; B:flw:const. at =20, %fﬁl; h—1-k at 7 — oo,

e =wpo(m); h=hy(n) atfy=ry=const. fi=g1=0.

The expression for the characteristic function Fy, is also simplified:

2 _
Fm:_“B—bfl.__ (35)
|_ 2,48
B’ldf,

Determination of analytical relations for particular physical distributions

(f\? ,pe/p, Pr), and numerical colution of the three-parameter, twice-localised sys-
tem of boundary layer equations for ionised gas will be the subject of our further
investigations.
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UBER DIE VERALLGEMEINERTEN GRENZSCHICHTGLEICHUNGEN
EINES IONISATIONSGASES

In diesem Beitrag wird die Stromung eines elektrischen Leitfahigkeitsgases un-
tersucht. Die entsprechenden Grenzschichtgleichungen fiihrt man an die sogenannte
unive;_selle Form zu. Dabei wird die neuen Veranderlichen, die Impulsgleichung und
zwel Ahnlichkeitsparametermengen eingefiihrt.

O UOPSTENIM JEDNACINAMA GRANICNOG SLOJA
JONIZOVANOG GASA

U ovom radu se istrazuje strujanje elektroprovodnog gasa. Odgovarajuée
Jednaline granicnog sloja dovode se na tzv. univerzalni oblik. Pri tome se uvode
nove promenljive, jednacina impulsa i dva skupa parametara sli¢nosti.
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