TEORIJSKA I PRIMENJENA MEHANIKA 15, pp 7-18, 1989, UDK 534

CHAOTIC MOTION OF ROTOR
L. Cvetiéanin
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1. Introduction. Rotors are the fundamental working elements of a lot of
machines. The rotors are usually made of metalic materials, but some of them are
made of non-metalic materials. The properties of these materials are non-linear.
For these rotors it is evident that the characteristics of motion depends on the value
of the parameters. Two types of rotation are the most usual:

1. the trajectory of rotor’s center is a circle around the start postition of the
rotor’s axle (large orbit) (Fig. 1.a.)

9. there is a deflection of rotor’s center and the rotor rotates around this
position (small orbit) (Fig. 1.b).

(In Fig.1. Sp is the start position of rotor’s center and Sozys is a fixed coor-
dinate system.)

&

Fig. 1. The trajectories of rotor’s center

But, for some parameters of rotor the motion is quite unusual, and it differs
from motion in Fig. la and 1b. Then, the efficiency and the productivity of ma-
chines are smaller. The operator have to vary the working parameters of the rotor
till the phenomena dissapear. Nowadays, there are a lot of papers which are dealing
with various kinds of motion of the mechanical systems. In the papers [1-6] the
chaotic motion of the one-degree-freedom systems described by Duffing equations
with soft, rigid and zero elastic characteristics are analysed. The physical sence of-
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chaos is given in papers [7-12] for these systems. In this paper various kinds of
rotor’s motion are analysed, the parameters which have an influence on the motion
are denoted and the criteries for obtaining parameters for some motions of center
are defined.

2. Model of Rotor. Rotor which is analysed is a shaft-disc system (Fig.2).
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Fig. 2. Model of rotor

It is a shaft-disc system. The disc is symmetrically settled in the middle of the
shaft. The mass of the shaft is neglictible in comparation to the mass of the disc.
The shaft is supported in two bearings. The shaft has a circular cross section. The
mathematical model is after the paper [13]

i+ hz+2F(|z]) = Pe*™ (1)
where: z = z + iy is the complex deflection function, z,y — deflection in z,y
direction of fixed coordinate system Syzys settled in the start postition of rotor’s
center, i = /—1 — imaginary unit, h — damping coefficient, F = —1 + |22 —

elastic force in the shaft, |z| = \/z2 + y2, P — amplitude of excitation force, Q —
excitation frequency, t — time.

The model of the rotor is a system of two second order nonlinear nonho-
mogenious differential equations. The model is strong non-linear. The traditional
approach to such problems is to linearise the equations. But, for such a problem a
linear approach is not sufficient. The original equation (1) is non-linear in nature.

There are a lot of techniques for examining non-linear equations. What all
these techniques have in common is the aasumption of a simple response of the
system which is then successively iterated upon to convergate to a “good” approxi-
mation to the actual response. Some motions are beyond the scope of approximate
analytical method and the technique is completely unable.to capture the essentials
of resulting motion.

The analyses of eq. (1) is done numerically. The differential equations are
solved by Runge-Kutta method.

3. Descriptors of Motion. To observe the motion and to better understand
it, several descriptors are available. Among these are: Poincare map and phase
plane portraits [1,2,4,10], power spectral density [3], stochastic sensitivity function
[14], probability density function [15-16], Lyapunov’s exponent [17], autocorrelation
function [5], time history [7,8]. It can be concluded that only one descriptor is not
enough to analyse the motion. Some of them had to be used together.
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In the paper the motion of the rotor described by (1) is observed by portraits in
z—2&,y—y, z—z planes, Poincare map and time history diagrams. These descriptors
can be denoted numerically. For the correct numerical description the time step had
to be defined. It is well known that there exists a difference between exact analytical
solutions of differential equations and numerical integrations of the equations. The
analytical solutions are continuous in time and numerical integrations involve finite
time steps. Because of this, numerical integrations are best regarded as the solutions
of difference equations rather than differential equations. For small time steps the
difference between differential and difference equation is presumed to vanish [6].
To denote the time step is not an easy task. The improper choise of time step can
cause spurious results. It is the question which integration method depends less of
the time step. In the paper [18] two explicit and four implicit numerical integration
methods for ordinary second order nonlinear differential equations are compared.
The Runge-Kutta and central difference methods are the most efficient, they do not
require small time steps to achive low error. Because of that Runge-Kutta method
is applied in this paper.

In accordance with the paper [6] the parameters of influence on the cahracter
of motion are: the initial values, z(0), y(0), #(0) and y(0), excitation frequency
Q and the excitation amplitude P. In the paper only the excitation frequency is
varied.

4. Observation of the Motion. The numerical values of rotor’s parameters
are: damping coefficient h = 0.2 and excitation amplitude P = 0.25, and the initial
conditions z(0) = y(0) = —0.2, (0) = y(0) = 0. The excitation frequency in varied
in the interval 2 = 0.5-2.

In Fig. 3. the solutions of eq. (1) inz—2,y—9, £ —y, 2 —t, A—1 planes and
Poincare map are plotted for various excitation frequences.

In Fig. 3.a the case when = 0.8 is shown. The curves in 2 — ¢ and y — 1
diagrams are harmonical. The curves in z —  and y — y planes are elliptical and
surround the points 0,+1 on the z- and y-axles. The portrait in z — y plane is a
circle. In the Poincare map there is only one point. The deflection of mass center
in A —t plane is a constant value.

For Q = 0.975 the curves in z — t and y — ¢ planes are periodical (Fig. 3.b).
The portrait in phase planes consists of elliptical curves and some curves surround
¢ = +1 and y = £1. In z — y plane beside a large circle a small orbit appears.
In the Poincare map there are two points. The deflection of mass center in A — ¢
plane is a double-periodical function.

By increasing of excitation frequency to = 0.99 the curves in phase planes
are more complex. The curve irregular deflects from a closed curve aroung +1 to
—1 and around 0 (Fig. 3.c). The curves in 2 —t and y—1t planes are non-periodical.
In Poincare map the strange attractor is plotted. The trajectory in z — y plane is
after a long period of time a system of a large orbit and a lot of irregular settled
small orbits which form a black ring. The A —t diagram is non-periodical.

In the Fig. 3.d for © = 1.2 the portrait in £ — y plane is a small circular orbit.
The A — t diagram is a harmonic function of small amplitude. The portrait in
Poincare map is only one point. In the phase planes ellipses surround £ = —1 and
y=-1.
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5. Discussion. The varying of excitation parameters causes varying of the
property of rotor’s center motion. For the small values of excitation parameter
the motion is harmonical (Fig. 3.a). For higher values of excitation parameter
subharmonical vibration occur (Fig. 3.b). Beside the large orbit small orbit appear.
By increasing of Q bifurcation occurs: from one orbit motion a periodic orbit of
2 at 2 = Q,, then this 2-periodic orbit flips to a 4-periodic orbit at Q = s, aid
so on, as is shown in Fig. 4. The sequence {€4,95, ...} has a finite accumulation
point 2., involving and infinity of periodic orbits.

Fig. 4. Feigenbaum cascade diagram

Each flip leaves behind and unstable orbit. It is a question if the Feigenbaum
cascade means the unfinite number of period doubling. Because of that the values
of é,, are counted:

Qn —Qnyr
Q1"|+1 - Qﬂ+2
In the Table 1 the convergence of the Feigenbaum cascade is shown.

6,1' =

n 0 1 2 3 1 5 6 T 8
period 1 2 4 8 16 32 64 128 256
Q, 9789 .9892 9913 9917 .99178 .991797 .99180 .9918013
0y 5.905 5.250 4.825 4.670 4.6694 4.66920

Table 1: Convergence of the Feigenbaum cascade

The ratio converges to the universal number 6., = 4.66920... as it tends to
co. It means that the motion is chaotical at § = 0.99. The regular motion is
substituted by an irregular motion. It forms a large and a lot of small orbits.
These small orbits are formed irregular and the motion is chaotical.

By further increase of parameter Q the motion changes form chaotical state to
a periodical state (Fig. 3.d). This bifurcation from chaotical to limit cycle motion
is intermittency explosion. The rotor’s center deflects and rotates around this
position. The motion is harmonical.

6. Explanation of Existence of Chaos. The system of differential equa-
tions (1) is
&+ ht —z+ z(z? + y?) = Pcos it

§+hg—y+y(:r:2+y2) = Psin Qt. (2)
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Forh=0and P=01t1is
i—z+z(z?+y?) =0 ﬁ—y+y(m2+yz)=0- 3)

This is the model of non-linear conservative rotor system. The static equilibrium
positions are

forz=0: y==+1 for = z=4%l
y=0 z=0.
Analysing the stability of positions it is
z=10 §= 3l
y=20 g= 21
g y=20 unstable position.

} stable positions

By multipying the first equation in system (3) by z and the second by y the sum-
marized equation is

(88 + ) — (2 + i) (2 + vi)(@® +17) = 0. (4)
After integration it is
(1/2)(@ +9%) — (1/2)(2* +¥°) + (1/4)(=" +¥*)* = C (5)
where
. T'=(1/2)(¢% + %) — kinetic energy (6)
V = (1/4)(e® + v*)? — (1/2)(z* + y*) — potential energy. (7)

The equation (5) represents the statement that the sum of kinetic and potential
energy is constant and it is expected in a conservative system. The value of constant
C is a function of initial conditions. The property of motion depends on the value
of the constant.

In Fig. 5 the potential energy (7) in function of amplitude A or deflection
coordinates z and y of the rotor’s center and the phase portraits are plotted. The
vibration response is

A= (22 + )Y (8)

If the initial conditions are such to give C = Cj there are two centers C; and
C, (Fig. 5.a) in z = £1 and y = £1. For C = Cj there are two curves which
intersect in the point z = # = 0 and y = y = 0 (Fig. 5.b). This is a separatrix
curve with saddle point. If Co < C < Cj there are two curves around the centers
C; and Cs. This is the “small orbit” (Fig. 5.c). For C > Cs there is only one curve
surrounding all the three equilibria. That is the “large orbit” (Fig. 5.d).

So, there exist two types of periodic steady-state oscillations: local osscilations
with small orbit and global oscillations with large orbit.

Now, let damping be introduced:
i+hi—z+z(z+y%) =0
J+hi—y+ (@ +y?) =0, ®)
The system is no more conservative and an integrated energy expression is no

longer possible. However, one can still perturb the equation about its equilibria
and conclude about the motion in phase-plane. The rotor’s center moves towards
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Fig. 5. Potential energy shema and phase portraits of: a) centers,
b) separatrix curve, c) small orbit, d) large orbit.

the points with minimal potential energy. These are stable focuses C; and Cy. The
rotor rotates around the stable position.

The chaotic motion is produced by the forcing funkction. The system described
by (1) has some periodic oscillations with small orbit or large orbit, while the
amplitude P and frequency  of excitation force does not exceed a certain critical
value. Then, on increasing parameter large orbit motion would jump into small
orbit oscillations — the jump phenomena belongs to the most characteristic features
of nonlinear vibrating systems. Jump phenomena of this type does not occur in
that case. Instead, when exceeds a critical value, large orbit turns into an irregular
motion consisting essentially on random like jumps from oscillations around z — -1
or y = —1 and back. The motion does not decay and in a long time interval shows
properties of a “steady-state” behaviour (Fig. 3.c).

In Fig. 6 the time history is shown from large orbit oscillation, chaotic motion
to small orbit oscillation.

X

AN AR
AV W W —

Fig. 6. Time history for various excitation frequences
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7. Analytical Method for Denoting Chaos. An analytical criterion for
chaos is given. It is based on the stability of the approximate analytical T-periodic
solution. Such analytical methods are developed for Duffing oscillators with soft
and hard properties, negative and zero characteristics which are general for all types
of Duffing equations. The approximative solution to (1) is considered

z = AefH+0), (10)
The constant values of the amplitude A and the phase 8 of the oscillation are
determined by applying the balance method of the leading first harmonic.

By substituting (10) into (1) and separating the real and imaginary parts the
following relations are obtained

Re: — AQ?— A+ A%=Pcosf, Im: hAQ= —Psind. (11)
The amplitude-frequency resonant curve is derived by eliminating ¢
A2(R2Q? 4 (42 - Q? - 1)?) = P2 (12)

These resonance curves for various values of amplitude of the exciting force is
plotted in Fig. 7. For small values of P the resonance curve consistes of two parts.
These two parts approach each other as P is increased. The corresponding critical
value of P, is

Per = 2/3/9. (13)

=0,25

amplitude

P=0,25
I————12 excitation frequency

Fig. 7. Amplitude-frequency properties for various values of excitation force

The stability of the solution (10) is studied by means of the method of varying
amplitudes and phase angles. Let the perturbed solution be represented as

z = (A + u)ef(@+e+y) (14)
with small perturbations u and v which depend on t. Let us substitute the relation
(14) into (1) and retain only linear terms in the perturbations u and v and take

into account the amplitude-frequency relation (12). This results in the following
system of two linear differential equations with constant coefficients

i+ htt + u(—Q% — 14+ 34%) — 20AQ — hvAQ =0
VA + hvA + v(—A+ A® — AQ?) + 24Q + huQ = 0.
The solutions of equations are: u = Ue?*, v = Ve?'. ‘
p2U + hpU + (-9 = 1+ 3A%) — 2pVAQ — hVAQ =0
Q2VA+hVpA+V(-A+ A — AQ*) +2UpQ + hUp = 0. (16)

(15)
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The characteristic equation is

bop? +bip+by =0 (17)
where ~
bo = h? 4 402 (18)
by = 2h(—=1+ Q* 4+ 24%) (19)
by = h*Q? + (-Q? - 14 34%)(-Q% — 1+ A?). (20)

The form of the eq. (17) is the same as for the one-degree-freedom system with soft
characteristic [22].

For positive damping (h > 0) the conditions of stability are
-1+ Q% +24*>0  (S; curve) (21)
h2Q% + (-Q% =1+ 349 (-Q% -1+ A%) >0 (S1 curve). (22)

The resonant curve and the boundary curves S; and Sy are shown in Fig. 8 for
h=02 and P =025

amplitude

-excitation frequency

Fig. 8. Resonant curve and S;, S; curves.
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Fig. 9. The region of energy dissipation (hysteresis type behaviour).

Stable parts of resonant curve are represented by full lines and the unstable
parts by dashed lines.
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A. transitation from stability to instability is found to occur at the frequency
Q = 1.0 where the curve S, interrsects the upper branch.

8. Comparation of Numerical and Analytical Solutions. Analysing
the results got in the chapter 4 and 7 it can be concluded that the analytical method
gives the result which is in vicinity with numerical results. In the neighbourhood of
the value Q = 1.0 (which is got analytically) is the region where bifurcation occur
and chaotic motion appears (Fig.9). In that region dissipation occurs.

9. Conclusion. The motion of the strong non-linear and excited rotor varies
by varying the parameters of excitation and the initial conditions.

In the paper the influence of excitation frequency on the motion is analysed.
For observation of motion as descriptors the portraitsinz —y, 2 —2,y— Y plane,
the portrait in Poincare map and time history diagrams (z —t,y — ¢, A — t) are
applied. The mathematical model of the rotor is a system of non-linear and non-
homogenous differential equations. For numerical integration the Runge-Kutta
method is applied. By increasing of excitations frequences the motion varies from a
limit cycle motion to chaotic motion. It is proved by Feigenbaum universal constant.
An analytical method for denoting of the chaotic motion is developed based on the
well known analytical methods for the one-degree-freedom systems. The obtained
value is in vicinity of the value at which chaotic behaviour of rotor’s center begins.
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DIE CHAOTISCHE BEWEGUNG DES ROTORS

In dieser Arbeit ist die Bewegung des Rotorzentrums bei der Anderung der
Anregungsfrequenz analysiert worden. Das Rotormodell ist ein nichtlineares Welle-
Diskus-System. Die numerische Schreiber der Bewegung sind die Portrate in den
z—2z,y—y, z—y Ebenen, die Zeitdiagramme ¢ — ¢, y — t, A — ¢ und die Poincare
Mappe. Die Frequenzanhebung andert den Bewegungscharakter: von iblicher
ruckweiser Bewegung auf der grossen Bahn iliber der chaotischen Bewegung bis
zur ublichen rickweisen Bewegung auf der kleinen Bahn. Die chaotische Bewegung
ist die Wirkung der ausseren Zwangskraft auf dem nichtlinearen Rotor.

HAOTICNO KRETANJE ROTORA

U radu je numericki analizirano kretanje sredista rotora pri promeni frekven-
cije pobude. Model rotora je nelinearan vratilo-disk sistem. Numericki opisivaéi
kretanja su portreti u £ — 2, y — g, ¢ — y ravnima, vremenski dijagrami z —¢, y — 1,
A —t 1 Poincare mapa. Porastom pobudne frekvencije menja se karakter kretanja
od ustaljenog.periodi¢nog kretanja po velikoj orbiti do ustaljenog periodi¢nog kre-
tanja po maloj orbiti. Haoti¢no kretanje je rezultat dejstva spoljasnje prinudne
sile na nelinearan rotor koja potetnim uslovima unosi odredenu energiju u sistem
koji je osetljiv na promenu energetskog nivoa sistema ¢ime se generisu kretanja
razlicitog karaktera. U radu je dat 1 analiticki kriterijum vrednosti frekvencije pri
kojoj dolazi do pojave haoti¢nog kretanja.
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