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1. Introduction. The theory of immiscible mixtures has recently been
presented in the papers of Bedford and Drumbheller (1], [2], [3] and other autors.
Bedford and Drumheller’s theory is based upon Hamilton’s extended variational
principle and includes a number of effects such as: the sedmintation of rigid particles
in an incompressible liquid, the bubble liquid, the dusty gas, the fluid-saturated
porous solid, a mixture of ideal gases, etc.

The problem of the interface, on the other hand, has been the subject of
extensive research of several authors [4], [5], [6], [7). In those papers different
thoretical approaches are given in the study of the interface problems.

Of a particular interest, form the point of view of the real membrane processes
are the problems of mixtures which contain the interface.

In this paper the material body in which the material interface of an arbitrary
shape is embedded is investigated.

The body is an immiscible mixture with the property that the individual con-
stituents of the mixture remain physically separated all the time. The fact that
the constituents remain separated, in the local sense, from the other constituents,
has several implications for the development of a continuum theory. The motion of
a given constituent will be kinematically constrained by the presence of the other
constituents. The change in the local volume of the constituent is measured in the
theory by the volume fraction.

In the first section of the paper preliminary considerations have been given.
The balance of mass has been presented in section 2. Following the principle of
virtual work we investigate the balance of momentum in section 3. In section 4,
we have considered the first principle of thermodynamics, obtaining the balance
of energy. The second principle of thermodynamics has been investigated and
entropy production deduced in section 6. In the section 7 will be demonstrated
how, from the results derived in the paper, as special cases, the results alredy
known in literature can be obtained.

2. Preliminaries. a) We consider the three-dimensional body B(t) in which
a material interface is embedded. The interface S(t) divides the bulk material into
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two paris V*(t) and V~(t) for which S(¢) is common boundary so that V(t) =
V*(t) #S(t) UV~ (t). The boundary of the body B(t) is 8V(t) = dV+(t) U dS(t) U
ovV-(1).

We shall suppose that both bulk materials are immiscible mixtures. The M
constituents of mixtures are treated as superimposed continua.

Using Cartesian tensor notation a motion of each constituent in a spatial co-
ordinate system is written

2 = X(a)t (X(a)k3 1), (1)
where X(.)x is a material particle of the a-th constituent. The Jacobian of the
motion (1) is

OX(a)k '
)= det | o0k ) 2

T = de (BX(a;K) @)
The velocity v(a), and acceleration a(,y; of the a-th constituent are

d :

V(a)k = 3 X(a)k (X(k;t), (3)
92

aak = FraX(ak (X3 t): (4)

The mass of the a-th constituent per unit volume of the mixture is partial density
of the a-th constituent, 1.e.

| P(a) = P(a)(Tk; 1) (5)
In an immiscible mixture each constituent has an actual or local density P(a) (the
mass of the a-th constituent per unit volume of the a-th constituent), i.e.

Pla) = Pa)(Tkst). (6)
Partial densities, local densities and volume fractions are related by
Pa) = P(a)P(a)> (7)

where the volume fraction is assumed to satisfy

D P =1 (8)
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b) We assume that the material interface of an arbitrary shape is embedded in
the three-dimensional immiscible mixture. We consider the interface without any
singular line. Thermomechanical properties of the interface are completely different
form the property of the constituents of the bulk material.

The velocity 9; of material particle that belongs to interface S(t) and the
absolute velocity v; of S(t) are related by

B — v = S (9)
On the other hand it can be written

(9; — vi)N; = 0, (10)
where N; is the unit normal vector on S (Fig. 1), and 7; is tangential to S.

¢) A variation is added to the motion (1) by writing

2r = X(a)k(X(a)k3t) + 52 (ayk (X (a3 t)- (11)
The corresponding variations of the velocity of the a-th constituent is
51)(&);: = (Si'(a)k. (1'2)

The variation of a function ®(,) holding the spatial point z; fixed is given by
6‘1’(0)‘3,‘ - 6‘1’(0,) = (I’(a),,’él'(u),‘. (13)

The material derivatives for volumes and surfaces are

o i + D(a),iV(a)is (14)
a% | PP . wen
7l £ E + @ ;9;. (15)

Transport theorems for volumes and surfaces are

d d®(q) )
—— $ d¥ = + P oV (a)di i dy
dt /v+uv- - v+uv-( dt e

+ .[SII(D(G)(U(G)i = V,')]]]V,' da, (16)
&4 dd. ,
a—t'/s‘l’da = [S(E+¢v5'j) da, (17)
where
[v]l=9t-v, (18)

indicated the jump of ¥ across S at zy. Divergence theorems in volume and on a
surface are

Aa-n.-da=/ A .','dv+/ Aag N; da. 19
favwav_ () ORG.D [ Aoy ] Ni da (19)
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/ Aimi dl = /(/i;,i + 2QA; N;) da, (20)
88 s

where n; is the unit outward normal to 8V+ U §V—, 7; is the unit binormal to 83
(Fig. 1), and 2 means curvature of S.

3. The Balance of Mass. The mass containted in a material volume V is
constant with time. This is expressed in a global form as
d f+— d
— d -— [ pdV = 0. 21
dt <%“/v+uv— Ple) V) at [SP y 1)
Using the transport theorems (16-17), after the localization yields the equations
dp’o:! . + -
dt + P(Q)U(Q);,g = 0, in VT UV (22)
dp .
—C-i-i-) + Pl i + HZm(Q)H = 0. on S (23)

o
with the definition
M(a) = pa)(V(a)i — ¥i)Ni. (24)
We can also write the equation (22) in the alternative form
P(e)R _ P(a)RP(a)R
Pla)  Pla)P(a)

Sy = (25)

where the subscript R denotes that the variable is evaluated in the referent config-
uration.

In the case of incompressible constituents this yields

Jioy = LR (26)
Pla)

4. The Principle of Virtual Work and Balance of Momentum. We
derive the balance of momentum from the principle of virtual work. To this end
we must modify this principle for the application to the case of immiscible mixture
which contains the interface.

First of all we define the total inertial quantity as follows

d [ d [
i = EE (Za‘ _/;+Uv- Pla)V(a)k dV) o ELP'U}; dv. (27)

After using the transport theorems (16-17) and balances of mass (22-23) we obtain
from (27) the following equation

d’Ug )k . ,\Ci‘f)
Iy = Z/v P(a) d: dV*‘[S[[Zm(a)(v(a)k—vk)]] da+[9p—&f da. (28)

tuy-
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The virtual work of these forces is

dv(q)i
* - § : '
A = /‘; p(a)jd%)-éx(aﬁdv
a

+uv-

+ js [[Zajm(a)(v(a),- - a,-)]]aa:-,- da + fs,aid’i—‘af,- da. (29)
The principle of virtual work can be written in a compact form
§AT = 54, (30)
where
6A* = A (VT USUY™) 4 642(0VT UBSUGY™) + 6A3(015). (31)

The expressions of the virtual works are

o il za: v/\;+uv- O (a)ijS%(a)ii v

+y f [®(aij 62 (ayi + (P(a) fa)i + b(a)i)82Z(a)i] 4V
& YUY~

—]&gj(Sf,"j da+'/(<f>;j6§:,-,j+ﬁf,-6:?:,-) da. (32)
S S
6Aq = j Tc,,-éa:a,-da—/[[ TQ,'(SJ:Q,'-—‘SJE,' a’a]],
2 ;avwav_() () S;()(() ) "
§A3 = [ Tibz;dl, (34)
as

where T ()i tD(’a),-,-, J(a)is 'T(a),- and T,); are, respectively, the symmetric stress
tensor, “double” forces, specific external body forces, the momentum supply, the
“internal” surface traction and the surface tzaction of the a-th constituent. Quan-

tities &;j, <i>.-,- and f;, are corresponding fields definied on S, and T; is the line
traction.
Note that nonsymmetric streds tgusors are defined by

bayii = Oayij = Yayiss  bj = Gij = Py (35)
and by taking the skewsymmetric part of (35), it follows
taia) = Blayiil Bl = B} (36)

Taking into account the equations (20) and (31-34) equation (30) can be written
in the form

dv " ~ ~
2 / P(a)—LLdta 6z(ayi dV + / HE ey (Ve —v.-)]]ém.- da
& PP N :

dv; . /
| ki L i B ;i dy
/; dt ik _ Za: V+uy- g el
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. ;jvwv— {‘b(a)eju‘r(a)f,j . (p(a)f(a)i,'{’ b(a)i)5$(a).'] dy
- [3 0ij0%;; da + L(@ijéf;,j + pfi62;) da
+ Z/
= Js
- v/v+uv— A6P(a) = P(a),i0%(a)i) AV

H()J(a) ]
+/ [*NaJa.ffSraHr Sp(ay| dV.
oy~ | V@ @) sb2ai + =5 =8

v+tuy-

Tta)t'ﬁﬂf(a),- da — [S‘[I:Z'T(a)i((sx(a)g —6.’2,)H da+£sﬁ52‘ dt

(37)

The terms A and j(,) are tne Lagrange multipliers associated with the volume
fraction and the conservation of mass of the constituents. Using the transport

theorems (16-17), and the condition

6J(a) = J(e)0%(a)k,k
after localization of (37) the following equations are obtained

dvgazi
Pe) gy = Ui T P(a)f(a)s

+ba)i + A(a) = (@), ¢ ImVIUYT

J
A= M in V+ uy-
P(a)
Ta)i = Ya)ijnj on OVt U oY~
+ +
T{a):' - t(a)iij =0 on S*
JE= fsz; on dS
P dt + ;nl(a)(v(a)i - ¥;) — ; (a)i
:f:'j,j -{-QﬂfiJ'Nj +f)f:, on S.

Using (42) and the transversality condition
) f,'jNJ' =il on S
the equation (44) can be written in the form

. di;

Pt [[Zpa(”(a)i = 0)(v(a); — ¥j) — Zt(a)fj ]] N; =Ty i + pf;
a [a ]

(38)

(39)
(40)

(41)
(42)
(43)

(44)

on S. (46)

The expressions (39) and (46) represent the balance laws of momentum of the a-th

constituent of the surrounding materials and the interface:
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5. The First Principle of Thermodynamics and the Balance of En-
ergy. The balance of the total energy in the global form is

d d dA°
—(E + K ; - (47
dt(E-l-Ix) - —(E+K)= 5 + Q, (47)

with the definitions

E = Z/ p(a)e(a dv (48)

E:fﬁéda, (49)
i / o dV, 50
Z i 2’0( )¥(a) (50)
- 1
K= pv da, - (51)
dAD
i Z/+ " (P(e) fla)iV(ayi + b(ayit(eyi + B(a)ii¥(aii) BV
+Zf T(a)iV(a)i da+/(ﬁfi@;‘ +(i)ijﬁij)da+/ T;0; dl.
av+uav- s a5 (52)

+uy-

+/;3hda—/ Giri dl. (53)
a8

where €(4), h(a), 9(a) and u(q), are, the specific internal energy, the specific external
heat supply and the heat flux vector of the a-th constituent, respectively, and
the energy supply to the a-th constituent due to the interaction with the other

constituents. Quantities ¢, h and §; are corresponding fields defined on oA
Making use of the transport theorems (16— 17) and balances of mass (22-23)

we have
dE dE de i
o e =2 Z/ P(a) dV +/H:Z€(Q)m(a}]] da (54)

Q= / Paha + U(a dv_h./ QQ‘{nida
Z (o) h(a) + U(a) %‘avmav—“

+uy- s .
+/Sﬁdt da—/[[ Zm(a)]] da, N
dK dK dV(a)i
a2t G 5 7 Za:./vwv— P(a)¥(a)i gy % (55)

1 9 .
_]S[[;-im(a)v(a)]} da+[gpv.—da f[[zﬁv m(a)ﬂ

The expression (29), written for real velocity fields, has the form

dAf db; .
g Z / P(a) dt v(a)‘ dy + dv’ v; da (56)

Tuy-
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+ [5‘ [[Zm(a)'u(a),-ﬁ,-]] da — /S ”:Zm(a)ﬁz]] da.
With Fegard to (55) and (56) we obtain
Upon substituting this into (47), we get
i—f+%—?+d—:;-—%]-=——j;ﬂ%;rn(a)(v(a)f“ﬁi)zﬂda+Q- (58)

Regarding the principle of virtual work (3) for the real velocity fields, the following
can be obtained

dA!
£ N g . d
dt ; /Wuv_ T(a)ij¥ajij AV

.z
Za: v+uv-
— fg&ijﬁi'j da + L(‘i’,‘jﬂ;”j +ﬁﬁﬁ,) da — Z/a T(a),-'u(a),- da

V+tuoy-

_f[[Zﬂa);(v(a);—ﬁg)Hda+-/ rf}v,' dl.
slL< s

Using (52-54), (56), (58-59), and transport theorems (16-17), (47) can be written
in the form

de“ dé
£ 3 A_.._..d
ZQ:/WUW Pla) g, dV+/;[;m(a)(eca) e)ﬂda+ Kot (60)
; ’ 2-] /
=My (V)i — U5 da = O(a)ijV(a)i,j AV
;Lﬂgm()(() )_ Za:vwv_(n():
+/[[E7'(a)i(v(a)f—@;)l da+/5uf!i,j da
sULE s
+ a)ia) + Uge)) AV +/”i1da
ZQ:L+UV_(P() (o) F (o) X

- i dV — f a)i N'da—/ “s,'da+./29“,-N-da.
;fvwv-%)u ; La@ilNida~ [ Gizda+ | 204N,

Localization of the equation (6) yields equations

[‘I’(a)u’”(a)s.j + (Pa) flari + b(a)i)”(a)i] av (59)

degaz . -
Pla) gy = T@)i¥a)i t Akt Pe)h(a) @), I VFUYT,  (61)
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. dé o :
Pa™t [[Z M(a) [(8(0:) — &) + 3 (vay - vi)z]
o

& Z'T(a)i (veay — ) + Z Q(a)iNi]]
= &:;Vi j + ph — Gii — 294 N; onS. (62)
With regard to the transfersality condition
¢iN: =0, (63)

and equation (42), the expression (62) has the form
_dé % 1 . %4
i ﬂzpta) [(f(a) — &) + 5 (v — %) ] (v(ayi = ¥)
a
= Dt (vayi — ) + Z‘I(a):']] Nj=6ijij+ph—dii onS.  (64)

The relations (61) and (64) represent the balance laws of the internal energy of the
a-th constituent of the surrounding materials and the interface.

6. The Second Principle of Thermodynamics and Clausius-Duhem
Inequality. The second principle of thermodynamics in the global form is

dN dN
e N, (65)
with
N= dy, 6
2 L., peme (66)
N= / pi da, (67)
S
and

1
T q(a)i™ da

N=Za:]v M‘W';fa

+uv- ) v+uav- 9(a)
oh 1
+ / Fda— f g dl. (68)
s 0 as 0

where 7)) and f(a) are specific entropy and thermodynamical temperature of a-th
constituents, while 7} and 6 are the corresponding quantities defined on S.

Using the transport and divergence thorems (16-17) and (19-20), and balances
of mass (22-23), form (65) the following local inequalities can be deduced
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dna
¥ o4 - £ Gt = 2o

:.9; ,
~d q(ag'z == &0 invtuy- (69)
. O
dan 1, . G0
Pdi - é(ph—Qi,i) = P
W HZ%)(W(Q) = 1) (v(a)i = Z E% H Ni >0 on S. (70)

Introducing z,b(o,) and 1 i.e. Helmholtz free energies of the constitutent and a
corresponding quantity defined on 9, as

o
V(@) = €(a) = Ma)¥(a) m YTUVT (71
Y =é—nf on S (72)

By solving (61) and (64) for p(ayh(s) and ph and substituting it together with
(71-72) into (69) and (70) we obtain Clausius-Duhem inequalities

Z(_ﬂﬂ dYa)  P(a)l(a) d9(a) 1

<\ Oy At T By dt T B (e
B i
e “Q(ga)z(a)") >0, inVtuy- 19)
O(a) ()

dy e 1, -
(dt +T]dt) +aljvt,J - éQig,i

. . 1 A
[[Zm(a 2)(0@) = 6) + (Ve = ¥) + 5 (vayi = ”f)g}]]
“TZU& )ij 'U(u)a' : ZQ‘ Cr)]( Q))HN >0 8.5 -

7. Discussion. In this paper it has been shown how the validity of the
principal of virtual work can be extended on the cases of immiscible mixtures
containing the interface. In this section, it will be demonstrated how the results
already known in literature can be obtained from those derived in the present paper
as special cases.

1) Bulk material balance laws (22), (39) and (61) are consistent with Bed-
ford and Drumbeller’s, [1], [2], corresponding balance laws, if the existence of the
interface in immiscible mixture is neglected in our considerations.

2) Taking that
Pla) = -ﬁ(a): (75)
or that there is no difference between partial and loacl density of constituents, it
follows from (7) that
Pla) = 1, (76)
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and from (40) _
He)d(a) = A (77)

Then the balance laws of the bulk immiscible material (22), (39) and (61) are
reduced to the known balance laws of classical mixtures

dp(a)

dv(a)i
dt + Pla)V(a)ii = 0, P

dt

= t(a)ijq T Pla)f(a)i T b(a)is (78)

P(a) = t(a)ijUa)ii T Ua)ii T Pla)(a) T U(a):
di

Using the definitions (8]

ZP(“) = Zp(a}v(a)i = pui, Z(t(a)ij - p(cx)u(a)iu(a)j) = tij,
a a

a

U(a)i = Y(a)i — Uk, zp(u)(e(a) g J %u?a)) = PL; (79)
o
S (aa)s = Laii Uari + (@) (e(@) + 38{a)) ¥@)i) = G
a
Zp(a)f(a)i A= pfi) Zb(a);‘ R Z(b(a)iv(a)i + u(a):') =4
o p <

Z(p(n)h(a) + P(a)fif(a)iu(a)i) = ph,

(o}

balance laws (78) take the form

do oy a3
- ii=0, p— =tij; iy P =tigvig+ it Phy
dt+’0v’ 0 P a tijj +pef o jVij T+ giitph (80)

which represent the well-known balance laws of a single component material. In
that case, the interface balance laws (23), (46) and (64) are reduced to the balance
laws obtained by Daher and Maugin [6] investigated a single component material
containing the interface:

dp .. . di; . s 4 5

-ﬁ + i+ [m] =0, p+ [o(vi — %) (v; = vj) = ti; JN; = tij + A i,
_dé 1 - xd )

by | Pile-+ 5w =) vy —vj) = tij(vi — %) + g5 || NV

:&gj’ﬁih, +[§;1"“ji,i‘ (81)

3) In the case of the immovable interface not exposed to thermal influences,
the following is obtained

d’t)g 2,‘ ! g
P(a) d; = t(a)ijj T P(a)f(a)i + b(a)i + AiP(a) n ytuy

T(ayi = Y(a)ij M on OVt U BV~



42 Golubovié Z., Cvetkovié P.
_ +
f(a)i = t(c.).-ij: on S
[[m(a)”(a)i - f(a)i]] =0, across S.

If here the assumptions stated in 2) are utilized, expresions are consistent with the
ones obtained in [6], by considering the dynamic-mechanical example.

4) In the case of the immovable interface in the immovable immiscible mixture
and if the thermal effects are neglected, it follows that

0= 1taysj + Pa)fia)i + bayi + Xiv@)y,  indVTUBY;

T(c,),' = t(a),-jnj, on OVt U ov—; (83)
+ _ 3+ ) %,

Tiayi = tayii Vi BE 5

[['T(a),-]] =i across S.

If the assumptions given in 2) are used in this case, the relations are consistent to
those arrived at [6] in the quasi-static mechanical example.
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UBER DAS PRINZIP DER VIRTUELLEN ARBEIT IN DER THEORIE
DER UNMISCHBAREN MISCHUNGEN
DIE EINE ZWISCHENFLACHE ENTHALTEN

In dieser Arbeit ist der materiele Korper, der die Zwischenfliche enthalt,
durch Anwendung des Virtuelarbeitprinzips betrachtet worden. Der Korper ist
eine unmischbare Mischung mit Eingenschaften, dass die einzelne Bestandteile der
Mischung durch die ganze Zeit physikalisch getrennt sind. Die thermomechani-
sche Zwischenflicheneigenschaften sind vollkommen unterschiedlich von den Eigen-
schaften des Umgebungsmaterials. Die Anwesenheit des Materials ausserhalb der
Zwichenfliche wird in den Bilanzrelationen der Zwischenflache iiber die Sprunge
der dreidimenzionelen Felder betrachtet.

O PRINCIPU VIRTUALNOG RADA U TEORUI » NEMESLIIVIH”
MESAVINA KOJE SADRZE MEDUPOVRS

U radu je koriséenjem principa virtualnog rada razmatrano telo koje sadrii
medupovrs. Telo je ,nemesljiva“ meSavina sa svojstvima da pojedini sastojci
mesavine sve vreme ostaju fizicki razdvojeni. Termomehanicka svojstva medupovrsi
se kompletno razklikuju od svojstava sastojaka okolnog materijala. Prisustvo ma-
terijala izvan medupovrsi je uzeto u obzir u jednacinama balansa medupovrsi preko
¢lanova skoka trodimenzionalnih polja.
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