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ON THE STRESS (MOMENT) REDISTRIBUTION
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1. Introduction. In the analysis of composite beam structures concrete is
considered as a linearly viscoelastic material with the aging property. The mathe-
matical formulation of the relation between the deformation and the concrete strain,
at the linear state of strain was given by Maslov [4] and McHenry [5]. The concrete
creep deformation was assumed as a linear functional of the strain history, i.e. they
adopted the Boltzmann-Volterra superposition principle for strain effects, modified
by the concrete age, and they arrived at the integro-differential relation. In the
theory of viscoelasticity with aging Mandel [6] estabilished a mathematical method
where in he used the linear integro-differential operators. In the course of deriving
the expressions for strain and displacement, valid for an arbitrary function of the
concrete creep, Lazi¢ [2] has introduced the linear integral operators by means of
which trough algebraic operations the entire procedure of solving strains of stati-
cally determinate and indeterminate beam is developed. In the present paper the
mathematical theory is applied to the analysis of the composite beam structures
by the slope deflection method which was not dealt with in the hitherto literature.

In the present paper the slope deflection method will be applied, where the
axial deformation of flexural members will be neglected. The structure with undis-
placeable joints will be considered, so that the unknowns are only the angles of
rotation of joints . The structure consists of “k” type members and “g” type
members. The “k” type member is the one rigidly joined at both member ends.
The member end are denoted by i and k and the corresponding moments by M;;
and Mg;.

The “g” type member is the one which is at one end rigidly joined and on
the other end hinged. The ends of that member are denoted by i and g and the
corresponding moments by M;, and M;, My; being zero (My; = 0).

In order to determine the internal forces and the deformation in the “k” type
member it is necessary that we know the rotations ¢; and ¢j of the member ends,
for the “g” type member we need only to know the rotation ;.

If m denotes the number of joints in a structure where at least one rigid angle
exists, then we can say that the number of unknown rotations ¢ is equal to the
number m.
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The angles of the rotation of joints ¢ for the elastic structure can in the known
manner [1] be expressed though moments at the member ends M;; and Mj; and

the external load.
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Figure 1

i = aigMip — Bix Mii + aik o

1
Ok = —Bri Mix + api My — agio. (1)

In expressions (1) by ik, Bix, Bri and az; are denoted the angles of deformation
at the member ends due to M;; = 1, My; = 1, when the member is not loaded,

and ajk 0, and oy g, the angles of deformation at the member ends due to external
load, when M;; = My; = 0.

2. Influence of the Time Deformations. Due to viscoelastic features of
concrete and relaxation properties of prestressing steel in the analysis of composite
structures, unknown quantities ¢ and moments at the member ends M;x, Mi; and
M;, are treated as time dependent functions.

We consider the case when since the initial time ¢ the constant moment M;;
acts. Also My; and external influences are being equal to zero. Therefore,

Mik(t,t0) = M 1" (2)
where fygiction 1* represents the Heaviside Function i.e.:
1 fort >t
1*=l*t,t =Ht—t =
(#,%0) ( 0) {0 for t < tp.

Consequently, we have:

(,Di(t,to) = a;k(t,tg)M.‘klo. (4)
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If we assume that moment M;; is a continuous time dependent function, then
the application of the Boltzmann-Volterra superposition principle may be written
as:

. " : OM; (0,1
@i(t to) = afi(t,t0) Mix 0 + / al(t, 9)-—"-‘5(6—~9) do. (5)
to
By a partial integration and with the known relation o/} = —a{; [2] expression
(6) may be written in the form:
T
pi(t,to) = afk(t,t)Mik(i,io)+/ ajy (¢, 0) Mix (6, t0) df. (6)
to
If the operator: N
&g = ofi(t, 1)1 + a5y (7)
is introduced, expression (6) may be represented in the operator form:
@i(t,to) = aix(t, to) Mik(t, to)- (8)

Analogously, we can write:
wi = i Mik — Bix Mii + o 0, ok = =B Mix + G Mii — afi 0. (9)

Operators introduced &, Ay, ﬁjﬂ and @}, are associated to functions ajy, By,
Bi; and aj; whose inte.grals are given by functions af;(t,t0), B (t,%0), ﬁ;i(t,tq)
and a};(t,to) representing angles of deformation at the member ends due to unit
moments M;; = 1* and My; = 1*, when the member is unloaded.

Expressions af; o = o} o(t, o) and o}, o = aj; o(t, o) presented in relation (9)
represent the angels of the member ends due to the external loading.

Quantities aj,(t,t0), 8% (¢, t0), BEi(t,to), ag;(t,t0), O.’;klo(t,tg) and a,";,.,o(t,to)
can be determined by known principle of virtual forces or by the conjugate-beam
method.

In the slope-deflection method, applied here, the influence of the normal forces
is neglected, so the expression for the curvature x in the analysis of composite
structures [3] will have the form:

k= (1/E,J;)F3,M. (10)
In the expression (10) the linear integral operator has been introduced:
Fjy = (1/e0)T' + ¥y (11)
which is associated to function F3,, whose integral is function
F3y = (1/e22)1" + 93, (12)

where:

Ey(t
en=14mle=1) e=el)=pdi Eo=Eta)i eto)=1;
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1 /
Yoy = 5(57171% + 67272¢3). (13)

Through the quantities Ay, éy4, y4, h = 1,2, geometric properties of the
cross-section [3] are introduced. Function 4 is the basic function. For the adopted
concrete creep function F* we can determine the value of function F3, for every
considered cross-section.

Using relation (10) and the principle of virtual forces the joint rotation may
be expressed in the following manner:

wi(t,tg) = /H(z,s)n(z,t,tg)dz: /H(z,s)E—lfﬁég(z,t,B)M(z,ﬂ,to)dz. (14)

If we consider the rotation due to moment M;;:
Mir =17 f(2) (15)

M;; and the external influences being equal to zero, then:
-_— 1 —~ -
ot (4, to) :/M(z,s)ﬂff’g’g(z,t,ﬁ)l (6, t0) () dz
— 1
= fM(z,s)ﬂFJQ(z,t,to)f(z)dz. (16)

We will consider the rotation due to external influences H: (M;; = My; = 0).
a) H = ¢ distributed dead load

-—— 1 -
ajr 4 (t,t0) = fM(z,s)E—w]fF{,z(z,t,B)Mq(z,ﬁ,to)dz. (17)

b) H = ¢ given displacement of the support
The rotation angle of the member t;x . will be a time-independent value.

a:k,c(t:tO) = ¢ik,cl*(t;t0)' (18)

The system of relations (9) with relations (17) and (18) considering various
effects H can be written in the following form:

~y al
N i H = Qi Mg g — ﬁ;kMk:‘,H + afk,Ha
& ., ., H=gqc (19)
ek, H = —Bpi Mik, g + 0 My g — o} g

The operators appearing in the system of equations (19) are comutative, and
the system of equations can then be formally solved by applying the Cramer rule.

The system of equations (19) has the solution given in the form:

Mixn = Alypin + Blyorn + My m,

d i ; (20)
Myi,gr = Biipin + Ayipx 1 + M b
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For the “g” type member we obtain analogously the expressions for moments:
Mign = ﬁfgsoi,ﬂ + M H- (21)
Operators in relations (20) and (21) will have the following form:
~ oy aif Y e e i i R P -
A = “;k"ii - BixBri) tay, it =B = (a;ka;ci — BirPri) "B (22)
~ o ~ o~ _ ~ il s
ki = (@ @); — BixPri) &y, ng w aig) -

The freee terms in expressions (20) M g, Miix and M, g depend on
external influences H = g, ¢:

a) H = q distributed dead load

—~

* _— 1 o "l ¥
ik, — —Ajp g, t Bjpagi g (23)
B o AL ol « _ . o
My q = Akik gt By agi g Mig,q = _Digaig,q'

b) H = c given displacement of the support
= _éfkwik.cl*: M}:i,c - _'é;ciwik,cl*: M:g,c = "-"-‘jt'g"vbig',cl‘l (24)

:"ic,c
where: - ’l 4 3 iy -
e = Al + Bix, Ci; = Ak + B (25)

In the structure with undisplaceable joints the unknowns are angles of rotation
of joints ¢. When writing the equations for determing the unknowns we start from
the equilibrium conditions of the joint i:

L lik j
!
P &
q e o
s w i I ¢
‘\K;—-/’ )
1 &
\Pi K
Figure 2
S M+ ) Mig+ M =0. (26)
k g

When expressions (20) and (21) are introduced into expression (26) i.e.
S (Atpi i + Biwor,n + Miem) + S (B pim + M) + Mi =0 (27)
k g

i=12,...,m H=gqc
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we obtain m integral equations with m unknowns . These equations are called
the equations of joint rotaton or shorter joint equations.

If we introduce operators:
A = ZA:k % ZD:g, ik = Bjj (28)
k g

and function

=) M+ Y Mo+ M; (29)
k g
then the joint equations may be written in the form:

Apim+ ) Anorn + Ay =0, i=19...,m; H=ge  (30)
k

Joint equations (30) make a system of m integral equations with respect to
unknowns ¢.

For the rate of flow and rate of creep (Ej = const.) of concrete creep function
F™ ther system of integral equations (30) may be solved by applying the Laplace
transforms. In other cases those equations may be solved by numerical procedures.

3. Special Case-Members of Constant Cross-Sections. Expression
(16) may be writrten in the following manner:

1 ——
bl to) = | 7 [ 01 d2] Epo,t0 (5
or shorter:
ajk(t,to) = apFy, (32)
where 1
Ui = E J; [M(z,s)f_'(z) dz (33)
known constant of the straight member (1] whose length is I, i.e.:
dip = l;k/(3EuJ.'). (34)
Then: _
& = g Fyy. (35)
Analogously we can write:
Bix = B = Bin Fay, i = agiFpy (36)
where
Bie = Bri = e /(6Eus), i = agi = iy (3B, J;). (37)

We will consider the rotation due to external influences H: (Mix = My; = 0)
a) H = ¢ distributed dead load, assumed constant since the initial time ¢,

M = M,1*(t, o). (38)
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Using relation(17) the rotation may be written in the following way:

- 1 —— "
ok o(t,t0) = [E T /M(z,s)Mq(z) dz] . F3,(2,t0) (39)
uvs z
or
ajy o(t to) = kg F22 (40)
where:
1 —
Xikg = T /M(z,S)Mq(z) dz (41)

b)H=c
Under the influence ¢, the given displacement of the support will be considered.
The rotation angle of the member ¥k c, will be a time-independent value, i.e.:

a;k,c = ¢ik,c1" (42)

/

The operators ;{';k, ~,’.k, Al ., and bﬁ-g appearing in the relation (22) for the
members of constant cross-section will have the following form:

~

z;k = 'Zii = aik?ﬁz o akiféz’ E:'k = E;u' = bikfém Dl'g = diygzr (43)

where the constants are of the form:
aix = axi = air/(@ivori — Bh) = 4Euli[lik, (44)
bir = bki = Bir/(cikari — Bh) = 2Buldi[lie,  dig = 1/aig = 3EuJi [lix-
The operator fgz appearing in expressions (43) is introduced as:
Fpolp=T1. (45)
Operator }:52 may be expressed in the following manner:

e Pl = VP | 2
fi = WD DV (1 _ M7 'rm)Bl' (46)

71 71 7, M

Operator Ih, is associated to function R' whose integral represents the concrete
relaxation function R* which for known concrete creep function F* may be deter-

mined. Operator B’ is associated to function B’ whose integral represents function
B* which is determined by solving the unhomogenous integral equation:

KB 1T,
Function K* depends linearly on concrete creep function F'* and on geometric
properties of the cross-section, i.e.
K* =7l +mf" (48)

Coefficients 711, 711 and 7a, v}, (h = 1,2) depend on geometric properties of the
cross-section [3].
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For the adopted concrete creep function F* we may always determine function
I3, representing the integral of function I}, associated to operator I;,.

The free terms M g and M}, ; in the system of equations (20) depend on
external influences.

For the constant cross-section members the solution of the system of equations
(19) may be obtained as:

* T T * ok
ik = Inglaiead, g + biragin], Mg = Iiglariah; g — bixafy ). (49)

For the considered loading cases H (H = g, ¢) by using expressions (45), (40)
and (42) we may write:

a) H=g¢q

L e R L ] B L] — * » — . * P * — *
Mik,q = TGk g +bikalﬂ',q = Dﬁfk,q: Mki,q = QkiQgy o _bikaik,q = mki,q’ (50)

M, and Mj;,q are the moments of fully fixed ends due to dead load.
b) H=¢
b= jz(—ciﬂbik,cl*) = 13,95 ., (51)
ke = Da(—crithir,c1%) = 13,0},
where:
Cik = aik + bix; Cki = Gk; + bg. (62)

M3, . and ME; . are the moments of fully fixed ends due to given displacement
of the support.

This paper presents the calculation of the composite beam with undisplaceable
Joints by the approximate slope-deflection method.

When analyzing the composite beam by the accurate slope-deflection method,
with the aim to encompass the influence of axial forces and derive all necessary ex-
pressions without mathematical negligences, considerable difficulties of mathemat-
ical nature occur. They may be understood by solving step by step, starting from
the most simple model towards more complex. That was the reason for adopting
the present approach solution of the beam with undisplaceable joints by neglecting
the influence of axial forces to the deformation.

4. Example. For the composite beam shown in Fig. 3 the support moments
wili be determined due to given loading cases:

&) constant distributed loading ¢ = 20 kN/m
b) lowering of middle support ¢ = 0,01 m

The cross sections are inhomogeneous and contain concrete part, denoted by

(b) and the steel part, denoted by (n). The respective areas are Fy and F,. The

geometric properties of the cross section will be reduced by the following factors
[2]:

vi = Ex/Ey, k=bn, E,=E, (a)

e — g e e e e e S————— —
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The areas of the idealized cross section are:

F; = Zk:Fki=zk:Vkar; k=b,n. (b)

The moments of inertia of the idealized areas F;, with respect to the axis z
are equal to the sum of centroidal moments of inertia Ji, of the reduced areas Fi,
with respect to axis z, l.e.:

Ji =ZJ1¢,-, E=h0 (c)
k

The elements yx of the symmetric matrix ||yailly 4 of the reduced geometric
properties of the cross section [2] will have the form:

yi1=For/Fi, Y22=oc/diy Mm2=721=5r/Si=0; S=vFRJ. (d)

The eigen values of the matrix ||yx|| are denoted by 7 and 2. The eigen values
of symmetric matrix ||7}|j of the reduced geometric properties are:

n=l=m; 9psl-n. (e)
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The values of the geometric proper- Table 1
ties of the cross sections are given in Table Cross 1-1 9-9
) _ section

The beam is once redundant and the F;/m?/ | 0.1658 | 0.1363
:ﬁlé{?;:tnlls ¢1 l.e. the rotation angle of J./m%/ | 0.0303 | 0.0160

On the basis of expression(30) the N el Wil
conditional equation from which the re- Y2 0.8070 | 0.7820
dundant value ¢; is determined, reads: 7 0.2189 | 0.2443

Ayorm + Algo =0, H=gqec (f) 7 0.1930 | 0.2180

Since the cross sections of beams are symmetrical, then operator Tﬁz in expres-
sion (46), and analogously to function I35 too, may be represented in the following
way:

Ly=vT"+mR, Iy=141"+ R (8)
where L
R=T-¥. (h)
The integral of function R’ represents of the concrete relaxation:

R*=1% = @%, (1)

In this example we shall adopt the creep function of concrete according to the
aging theory with the constant elasticity modulus of concrete [2]. Then:

Yr=1—e"%, Y =&, ()

Using the mentioned expressions the integral expression (k) will be solved by
the application of the Laplace transformation. Redundant value @15 may then be
written in the form:

Y10 = Ko + KgeP?¥r H=gq,c (k)

where K and Ky constans obtained by the application of the inverse Laplace
transformation.

The moments in joints will be determined on the basis of expression (20) i.e.:

~

Mir,u = Aigpra + Miygo,  H=gq,c (1)

where on the basis of expressions (43), (44), (g) and (h) expression (1) then reduced
to following form:

Mg = air o1 — airya ¥ 18 + MirH 0, H=gq,c. (m)
We shall introduce the following function:

Zn=V¥p, H=gec (n)
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Table 2
t P1 Mi3/kNm/ | M3, /kNm/
to | 2.488E-0b6 226.456 -136.78
t 7.436E-0b 226.38 =137.31
to | 7.934E-04 -1711.704 -2672.5689
t 7.614E-04 -401.412 -595.56b3

29

The value of function Zx will be determined by applying the Laplace transforma-
tion.

The calculated values of redundant quantities ¢z, H = ¢, ¢, and the moments
in joints are presented in Table 2. The Table 2 constains also the values calculated
at the initial time t = t; when the beam behaves as elastic.

When analyzing the obtained results a considerable contribution of time de-
formations is observed, due to lowering of middle support while that influence due
to constant loading, as is known, see [7], is negligible.

5. Conclusion. The literature elaborated the method of forces in the analysis
of composite beam structures. This paper shows that the slope deflection method
can very successfully be applied to the analysis of the composite beam structures
and thereby find the contribution of time deformations on the redistribution of
strain. The mathematical theory is applied, too, which starting from the integral
connection between statical and deformation quantities provides accurate expres-
sions of the slope deflection method without mathematical negligences. The setting
of such a theory is justigied from the practical point of view because it opens the
possibility to evaluate the accuracy of the existing approximative methods, approx-
imation nature as well as the competency of their application in practice.
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BKJIIAII IEPOPMALIMIN 3ABUCHUMEIX OT BPEMEHU
HA TIEPEPACIIPENEJIEHUE HAIIPAXEHUNA (MOMEHTOB)

M compAREHHHX KOHCTPYKIMA IPOM3BENCHHH OCHOBHHE YPaBHEHHA METO-
HaM gefopMauud. BiuAHME HOPMaNbHHX CWI Ha HeQopMallyio IpeHeGperarecs.
PaccMaTpuBaeTcs KOHCTPYKLMSA ¢ HEMOOBMAHEIMM Y3/1aMU, KOTOPAd COCTABJIEHHA U3
CTEpAHEN Tvna “k” u Tuma “g”. IlefopMallMOHHHE HEOMpedeluMHue GYLYT TOIBKO
YIJIH BpalleHUA ¢ KOHLOB CcTepAkHeN. PaccMaTpuBaloTcs OBa CiydYasd BHEWHUX BJIU-
AHMA, TO €CTh. PABHOMEPHO paclipele/€éHHad Harpy3ka K CMeIeHMe OOHOTO KOHILIA
CTEpXHA B HAIIpaBJICHUHU MEPIIEHAUKYIAPHO K OCH CTEPKHA.

WMesd B By BA3KO-YIIpyriie 0cOGEHHOCTH GETOHA M peSIAKCAILMIO BHCOKOKade-
CTBEHHON CTajIM IJIA MPEABAPUTEILHOIO HallpAXeHUA OeTOHA, HeopMallMOHHEIE He-
OIIPCACITUMEIE BEIMIMHH ¢ M MOMEHTH Ha KOHLAX CTEpPXKHEN, paccMaTpUBAaKOTCA
Kak QyHKuua BpeMeHU. IToaTOMy MIs mpencTaBiieHMA BCEX OCHOBHHX COOTHOLICHUM
MCIIOJIb30BAaHHH MHTErpajlbHHE ypaBHEHUA, CUMBOJIMYECKM JIMHEAHBIMU UHTETpaJlb-
HEIMU orlepaTopaMu. TaKMM 006pa3soM YCTAHABIMBAETCA aHAJOIMA ¢ M3BECTHHMU
anrebpavieCKMMM peIALMAMY MeTola JeopManui LIS KOHCTPYKUMA OT YIIpyroro
MaTepHaa.

[IpuMenas meton aefopMalvy B IKCICHHOM [IPMMEpPE PaccYMTaHHE Aedopma-
ILMOHHO HEONIpeleNIEHHEE BEIMIMHE M MOMEHTH B OII0paX BpeMeHM t U to. CpaBHU-
Bad OTH BEJMMHH 3aMEYaeTCA 3HAYUTENbHHNA BKJIal BPEMEHHHX HeopMalui Ha
MX IepepacripeleieHHe.

DOPRINOS DEFORMACIJA ZAVISNIH OD VREMENA
NA PRERASPODELU NAPONA (MOMENATA)

Za spregnute konstrukcije izvedene su osnovne jednaéine metode deforma-
cija. Uticaj normalnih sila na deformaciju se zanemaruje. Posmatran je nosaé
sa nepomerljivim ¢vorovima sastavljen od Stapova tipa “k” i tipa “g”. Deforma-
cijske nepoznate su samo uglovi obrtanja ¢ krajeva stapova. Razmatrana su dva
slu¢aja spoljasnjih uticaja, i to: zadato raspodeljeno optereéenje q i zadato pomer-
anje jednog kraja Stapa upravno na njegovu osu.

Zbog visoko elasti¢nih osobina betona, deformacijskih neodredene velicine ¢ i
momenti na krajevima Stapova posmatrani su kao funkcije vremena. Otuda su sve
osnovne relacije prikazane preko integralnih jednaéina, simboli¢ki preko linearnih
integralnih operatora. Tako je uspostavljena analogija sa poznatim algebarskim
izrazima priblizne metode deformacija za nosade sa nepomerljivim évorovima od
elasticnog materijala. Svi potrebni izrazi izvedeni su bez matematickih zane-

marenja.

- Primenjujuéi metodu deformacije u brojnom primeru sra¢unate su deformaci-
jski neodredene veli¢ine i momenti nad osloncima u trenutku ¢ i to. Uporedujuéi
te veli¢ine, uotava se znatan doprinos vremenskih deformacija na njihovu pre-
raspodelu.
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