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1. Introduction. It appears that for soil-structure interaction problems
forthcoming in earthquake engineering and at dynamically loaded machine founda-
tions a homogeneous half-space model for the earth is too simplifying. To obtain a
more realistic one it has to be endowed with some inner structure, which parallels
that of the real earth. This however substantially increases the mathematical com-
plexity of the problem under consideration. In our work we are trying to cope with
both problems simultaneously. So a layered half-space (Figure 1) has been chosen
as the physical model of the earth. The interfaces of the layers are parallel to each
other and bounded perfectly to one another. The material properties inside each
layer can vary from one layer to another in any way. The assumed geometry of the
model can be justified by the smallness of the typical foundation dimension relative
to the radius of the earth and by the fact that the layers with different material
properties are almost horizontal in many practical situations. The assumption that
the soil material is elastic can be justified by low power transmission per unit area
of the interface between a foundation and the soil. The material damping in the
soil is modeled in the case of the harmonic time dependence by the imaginary com-
ponent of the elastic constants [1]. A similar physical model has been employed
also by other researchers e.g. Kausel [2], Petyt and Jones [3] and others.

It appears that the dynamic properties of the layered half-space, when it is
studied alone or as a substructure to a more complex problem, are most suitably
given in the frequency domain and by its Green’s function in space. The method
of its derivation and its characteristics are the subject of this paper. We limit our
attention however to the antiplane problem alone, where the only nonvanishing
component of the displacement vector is directed along the z axis and is a function
of z and y but not of z. It is governed by a scalar wave equation [4]. The components
of the displacement vector in the plane problem and three dimensional one can be
deduced from two and three potentials respectively, which also satisfy scalar wave
equations as shown by Umek and Strukelj [5]. Therefore the methods developed
in this paper can be applied to solve these problems, too, however the numerical
effort increases correspondingly. The other limitation we have set ourselves for
this paper is that we are looking here for the Green’s function for the surface
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loads only, which leads to the solution of the soil-structure interaction problems for
surface mounted foundations. The papers on the volume load Green’s function and
the corresponding embedded foundation problem are in preparation.

2. Mathematical model. The displacements inside each layer and in the
underlying half-space (Figure 1) are for the antiplane motion harmonic in time,
governed by a reduced scalar wave equation:

Fig. 1. The Layered Half-Space; Geometry and Material Properties.

Viwi+0?wi=0; i=1,2,...,nH (1)

where c,; is the shear wave velocity and w; the z component of the displacement
vector in the i-th layer respectively and w the driving angular velocity. It is required
that the surface of the half-space is stress free, except along the z axis where a unit
line load acting in the z direction is applied. Thus we obtain the following boundary
condition on y = 0 plane:

6w1
Ty (28, y=0)=p—| = —6(z) (2
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where 7, is the only nonvanishing component of the stress tensor and i1 the shear
modulus in the first layer. The perfect bonding of one layer to another and the
n-th layer to the underlying half space implies the continuity of the stresses and
displacements along their interfaces. This can be mathematically expressed as

Ow;
wi(z, y = Hi) = wiyi(z, y = 0) #15—1;

(3)

y=H; y=0

It is required by the eliptic character of partial differential equation (1) that the
boundary condition is given along a closed contour. On the other hand the semj
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infinite character of the half-space implies that no boundary exists for y > 0 and
therefore no closed contour can be drawn around it. In this case the boundary
condition along the “missing part of the boundary” must be replaced by Sommer-
feld radiation condition, which states that at large distances from the source only
outgoing waves are present and their amplitude decays according to the law of the
geometrical spreading. Its general mathematical form is given e.g. by Achenbach
[4]. In our work the radiation condition is going to be satisfied after a general solu-
tion of equation (1) is derived by dropping the terms, which do not obey the above
stated requirements. The mathematical form of the problem under consideration
is thus given by Equations (1), (2) and (3) and the radiation condition.

3. Method of Solution. The geometry of the problem under consideration
suggests that the solution could be easier derived, if the Fourier transform in the
z-coordinate is introduced as:

co

Wie,y) = ] wi(e, 9)e* de. (4)

-0

The partial differential equations (1) become in the Fourier domain ordinary dif-
ferential equations, of which the solutions are:

Wi(€,y) = Cir(€§)e™? + Cia(€)e™ 7Y (5)

where Cj; are integration constants, which are to be determined by the boundary,
continuity and radiation conditions respectively and 7;, are:

7= \Jer - /e, (6)

It can be seen that the solutions Equation (5) are from the mathematical point
of view not unique, as one should expect for the motions in a linear mechanical
problem, due to the square root appearing in 9;. The uniqueness of the solutions is
achieved by the introduction of the branch cuts. They can be led with respect to
the layers arbitrarily, where attention shoud be paid only that the inversion path
does not become too complicated. The situation in the underlying half-space is
entirely different. Here the branch cuts are to be introduced in such a way that by
dropping one of the terms in Equation (5) the radiation condition is satisfied, too,
which implies that the real part of the yg must be either positive or negative in the
whole complex £-plane. We start our derivation of the conditions for such a branch
cut from the wave equation with a certain amount of damping. The assumed time
dependence €'“! leads us to the reduced wave equation in the form:

gViwg + (w? — iwCcly)wg =0 (7

where ( is the assumed damping coefficient, thus a positive real number. The
further development, which parallels that given above for the undamped case, leads
us to the yg, in which damping is included as:

g \/52 — (W?/c?y) + iwC. 8)
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Fig. 2. Branch Points and the Corresponding Branch Cuts.

The above expression will remain positive or negative in the whole complex §-
plane, if the phase angle of the radicand varies between —7 and 7 or m and 3«
respectively. Therefore the imaginary part of the integrand must be zero on the
branch cut. This condition yields the hyperbolas shown in Figure 2. As the branch
cuts for the damped case we are free to take the inner or outer part of the hyperbolas
emanating from the branch points. Taking into account the integration path of the
future Fourier inverse transform it appears to be more convenient to adopt the
outer portions of the hyperbolas as the branch cuts, that in the undamped case
become portions of the real £ axis from the branch points outward. The real part
of the y4 becomes in this way negative and the solution of Equation (1) for the
half space, which satisfies the radiation condition, becomes:

Wh(E,y) = Cri (€)™Y, (9)

For reason of convenience the branch cuts for the layers are led in the same way as
the ones for the underlying half-space.

The branch cuts introduced in the described way have made Equations (5)
unique and have led us to the satisfaction of the radiation condition. To complete
the solution in the Fourier domain these equations must be introduced into the
boundary condition Equation (2) and into the continuity conditions Equations (3).
As a result we obtain a system of linear algebraic equations with the integration
constants C;;j(£) as unknowns. It is most convenient to solve it:for a limited number
of layers by a computer package for symbolic algebra calculations. In our work the
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program MUSIMP has been successfully applied for the casses with up to four
layers, which is enough to cover most of the practical situations. In the case when
more layers have to be considered the numerical solution of the equation system is
the only possibility. After the integration constants are determined one or the other
way, they are introduced into Equations (5), which now yield the displacement in
the i-th layer in the Fourier domain. The displacement in the first layer of the one
layer half-space is e.g. given by:

cosh[(H; — y)11] — B2 sinh[(H; — y)71]
A1

Wi(€,y) = (10)

Him [sinh('ylHl) = KEYE COSh(‘h.Hl)
Mm

4. Inverse Fourier’s Transform. The displacement in the layers and in the
underlying half-space in the Fourier domain, obtained as described in the previous
paragraph must be now transformed back into the geometrical domain by the well
known formula:

wiz, ) =5 [ Wleme . ay

It appears that two different situations exist: the first one when the displacements
can be given by an analytical formula as it is in the case e.g. of the one layer half-
space problem Equation (10) and the second one in multi layer problems where the
displacements due to the numerical solution of the equation system with integration
constants C;; as unknowns are known for discrete values of the Fourier parameter
¢ only. In the latter situation it is obvious that only a numerical evaluation of the
integral in Equation (11) can be performed. The detailed study of Equation (10) as
the most simple case of the layered half-space problems, where the displacements
can be given by an analytical formula, has convinced us that in this case too, only
the numerical Fourier inversion can be introduced.

The expected difficulties with the numerical evaluation of the integral such as
in Equation (11) are due to several causes: the integrand can become singular or
change very rapidly along the integration path, the range of integration is infinite
and the integral may not be defined for some values of z and y. From the very
nature of the Green function it is expected that the latter is the case at the source
point and at the source point alone. Therefore the problems connected with the
existence of the inversion integral appear in our case in the first layer only. Here
the solution is split up into two parts: the Green function for the homogeneous
half-space with the material properties of the first layer, which is a well known
function [4] in the Fourier and in the space domains and into the remaining part,
for which the inversion integral is well defined for all the values of z and y.

The displacement in the first layer is now given by:
2 i
w1 (:c,y,w) =w (z:y:w) =y EH((E) ((W/cu)f) (12)

where r = (2% + y?)'/? and H(? is Hankel’s function of the zeroes order and of
the second kind, which represents the contribution of the ray travelling from the



132 Umek A. and Strukelj A.

source to the receiver point without any reflection. Taking into account its integral
representation [6] and the Fourier transform of the total displacement the Fourier
transform of the remaining part of the displacement VV—1(£ ,Y,w) can be computed,
for which the inversion integral exist and is bounded for all values of  and y. In
the case of the one layer half-space problem we thus obtain:

(1 — ”_fﬂﬁ) e Ha cosh('ny)
K171

H171 [sinh('ylHl) o cosh(y1 H;)
K171

Wl(fxy,w) -~ (13)

Physically the expression above represents the contribution of the reflected waves
to the displacement at the receiver point. The expressions for W;(£,y,w) and
Wi(§,y,w) i =2,...,n,H, have from the point of the numeric Fourier inversion,
some important features in common. The only singularities of the integrand are
at the branch points defined with 4; = 0; in the limit as £ — +oo they behave
as O{¢~! - exp[—(2H, — v) - €[]} ; the inversion integral is always bounded and for
small values of z and y, which are common in soil strucutre interaction problems,
their contribution to the total displacement is small.

The original Fourier inversion path runs through all the singularities
of the integrand.  For the purpose of numerical integration it is conve-
nient to replace it by an equivalent one which is placed at a certain dis-
tance from the singularities. This can be achieved in our case only in two
steps. First we introduce new the integration variable ¢ which is defined as:

¢ =(esm/w)-€ (14)

where c;,; is the maximal shear wave velocity in any of the layers or the underlying
half-space. In the new complex ¢ plane the singularity closest to the imaginary ¢
axis is at point (1.0, 0.0). Now an equivalent box shaped inversion path is selected,

Fig. 3 The Fourier Inversion Paths and Integrals.
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shown in Figure 3, in such a way that the smallest distance from it to any of the
branch points is > 1.0. Along it the transformed displacement varies slowly and
the behavior of the inversion integrand is determined by its kernel only. The total
integration path is now divided into seven intervals denoted in Figure 3 by I; to
I7. From the point of numerical integration they can be divided into three groups.

The integrals I; and I7 are of semi infinite extent with the integrand, which
behaves in an oscillatory way. It can be further seen that they are complex conju-
gates of one another and their sum is twice the real part of any one of them. The
infinite range of integration can be reduced to a finite one by:

I], + I7 = 2Re I7 = Csm Re (f W{(C, y’w)e_i(csm/w)cx dC)
At

W

(7w)/(cam®)
= Zm [cos(c’m .’L‘A+> ] W,'*(C)cos(c’—ma:(j) d¢
Tw w o w

(xw)/(come)
—sin ("—"‘ zA+> f W (¢)sin (c’"‘ :cC) dC] (15)
0

W w

where W (() is defined as:

WiC) = Y (-)!Wi (< + A + k;i’-‘“’—;). (16)
k=0

sm

The integrals in Equation (15) can be evaluated by standard numerical procedures,
therefore the infinite series in Equation (16) has to be computed. It has been shown
that the transformed displacements W, and W;, i = 2,...,n, H, decay rapidly with
growing values of |(| and therefore the infinite series in Equation (16) converges
very fast and only few terms are needed to obtain its sum with sufficient accuracy.
After the evaluation of Equation (16) Romberg’s procedure [5] has been adopted
to compute the integrals in Equation (15). ‘

The paths of the integrals Is and I5 are parallel to the real { axis and of finite
extent A~ to zero and zero to At respectively. Along these paths the transformed
displacements vary modestly with ¢, which is not the case with the kernel of the
inverse Fourier transform, which for some values of the parameters z and w oscillates
rapidly. This could couse numerical instability if the usual formulas for numerical
integration were applied. In our work it has been assumed that slowly varying
transformed displacements can, with sufficient accuracy, be approximated by a
quadratic parabola on a chosen interval. The integral I; over such an interval then
becomes:

1 [htei , 1 [t .
le= o ,/-h+ci W; (<, y,w)e' d¢ ~ o [_h Py(C)e'?t d¢ (17)

where W; denotes transformed displacements for j = 2,...,n, H and Wiifj=1,¢
is 1, g is —¢smz/w and Py is polynomial of order two, which in the best possible
way approximates W;. After the coefficients of P, are expressed with the ordinates
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of W; the second integral in Equation (17) can be evaluated analytically. Thus we
obtain:

I ~ a(0)W;(h,y,w)e’ + B(O)W;(0,y,w) +1(O)W; (—h, y,w)e™* (18)
where 6 = gh and '
a(f) = ¥(8) = (h/26%)[(0 — 2i)e~ %% — 207 + 30 + 2i]
B(6) = (4h/6%)[sin(8) — 0 cos()].

The bar over v denotes its complex conjugate. If high accuray of computation is
required, a small k has to be chosen and # becomes small too. In this case it is
recommedable to replace Equations (19) by their power series expansions, which
are given as:

(19)

h h., 2 % 5  2h \
) =~ Y — —p? _ 2 p4 223 S8 L.
olf) =70~ 3+ 0" - 150" + “( 5 Tl )
4h 2h., h
Ny — — =92 4 —p*t—.... )
PO~ 5~ 150"+ 510 (20)

The use of Equations (18) and (19) respectively (20) leaves the evaluation of inte-
grals I3 and I5 unaffected by their oscillatory behavior and thus very stable and
efficient.

The paths of the integrals Iz, I4 and Ig are parallel to the imaginary { axis.
The behavior of the integrand along them is dominated by the kernel of the inverse
Fourier transform, which in this case behaves exponentially. This does not lead to
unstability of numerical computation, howerer it lowers its efficiency considerably.
Therefore special integration formulas have been derived for this case, too. Their
basic idea goes along the same lines as i the previous case, only the argument of
the exponential function in now real not imaginary.

The above described techniques for the evaluation of integrals I to I are a very
efficient tool in the wide range of low and medium frequencies w and distances z for
performing the inverse Fourier transform given in Equation (11). To demonstrate
their use the example described in the following paragraph has been chosen.

5. Illustrative Example. As the illustrative example a half-space consisting
of one layer on top of the underlying half-space has been chosen. To normalize it,
the thickness of the layer, its shear modulus, and the shear wave velocity in it have
been introduced as units. From them the nondimensional units for time and mass
are derived. For the material properties in the underlying half-space the following
nonhdimensional values have been adopted: shear modulus and shear wave velocity
are equal 2.0. The nondimensional frequency of the driving forces is 1.0. For these
parameters the values of the displacement along the surface of the half space have
been computed and are presented in Figures 4 and 5. It could be immediately
realized that the layered half space solution can be divided into three areas with
respect to the z coordinate. In the vicinity of the source point the displacement of
the surface is predominantly given by Hankel’s function (Eq. 12) and the magnitude
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Fig. 4. Green's Function for the Illustrative Example: The real (1) and the
imaginary part (4) of the regular part; the real (2) and the imaginary part
(5) of the singular part; the real (3) and the imaginary part (6) of the total
Green's function.
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Fig. 5. Green's Function for the Illustrative Example: The absolute value (1)
and the phase (4) of the regular part; the absolute value (2) and the phase
(5) of the sangular part; the absolute value (3) and the phase (6) of the total
Green's Function.

of the displacement w; is for an order smaller. Since Hankel’s function is through
its polynomial approximation [6] known with extremely high accuracy, the relative
smallness of the numerically computed part of the displacement guaranties by itself
the highest quality of the results in this region. Since the width of a foundation is
usually much smaller than the thickness of the layer, all the ordinates of Green’s
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function needed in soil structure interaction problems fall into this region.

The second area is, where the magnitudes of either part of the displacement
are of the same order. In this region, which is important in computation of the
interaction between two or more neighboring foundations, no estimate of the error
of the numerically computed part of the displacement could be given. It can be
however concluded that it could not be greater than in the area with a bigger .

The third area, in which the numerically computed part of the displacement
dominates, is characterized by the total reflection of the rays originated at the
source point. Here the magnitude of the total displacement is expected to and in
fact does approach a constant value. This indicates that the numerically computed
part of the displacement has been determined with an accuracy sufficient at least
for these results to be used in the convolution type integrals over the foundation
interface, by which the interaction forces are determined.

6. Conclusions. It has been demonstrated that the just described method
yields the antiplane Green’s function for a layered half’space with harmonic loads
along its boundary. The computational effort is very reasonable and the stability
of the method excellent. If further applied to soil-structure interaction problems
Green’s function reduces the numerical effort, as compared to the problems, where
a fundamental solution is used. The interaction integrals are to be defined along
the soil structure interface only. So the problem is considerably reduced in size
as compared to the use of fundamental solutions, where the integrals are to be
defined along the surface of the half-space and along the layer interfaces leading to
an infinite dimensional dynamic stiffness matrix. Therefore it is believed that the
soil-structure interaction problems based on the Green’s function approach, the just
derived one is only the first and the most important step in such a process, compare
advantageously with respect to the accuracy and computational effort to the ones
formulated on the boundary element approach. The authors are also convinced that
the same or a very similar method could be used to obtain Green’s function for loads
inside any layer, which are needed in embedded foundation problems. It appears
also that Green’s functions for the plane and the three dimensional problems can
be obtained along the same lines.
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DIE GREENSCHE FUNKTION FUR EINEN GESCHICHTETEN HALBRAUM
BELASTET AM RANDE MIT IN DER ZEIT HARMONISCHEN KRAFTEN

Im Beitrag ist eine Methode fur die Ableitung der Greenschen Funktion fir
einen geschichteten, an seinem Rande belasteten Halbraum gegeben. Dabei haben
wir uns auf die Krafte mit harmonischer Zeitabhangigkeit und auf den ausserebenen
Spannungszustandsfall begrenzt. Die leitenden Differentialgleichungen haben wir
mit Hilfe der Fourierschen Transformation in gewdnlichen Differentialgleichungen
umgewandelt und ihre Losungen, die alle Rand-, Kontinuitiats- und Radiations-
bedingungen erfiillen, bestimmt. Die so gewonnene Losung wurde dann in einen
singularen und einen regularen Teil geteilt. Die inverse Fouriersche Transformation,
die das behandelte Problem zu Ende fiihrt, erfolgt fur den siguldren Teil mit der
Transformation des Integralweges so, daf8 wir eine bekannte Integralrepresentation
einer Besselschen Funktion bekommen, und fiir den regularen Teil durch numerische
Kontourintegration.

GREENOVA FUNKCIJA ZA SLOJEVIT POLPROSTOR, KI JE
NA ROBU OBTEZENEN Z SILAMI HARMONICNIM V CASU

V sestavku podajamo izpeljavo Greenove funkcije za na robu obremenjen slo-
jevit polprostor. Pri tem smo se omejili na sile s harmoniéno ¢asovno odvisnostjo in
na izvenravninski sluéaj. Vodilne diferencialne enaébe smo s pomocjo Fourierjeve
transformacije prevedli v navadne diferencialne enaébe in doloéili njihove resitve
ob zadostatvi robnih, kontinuitetnih in radiacijskih pogojev. Tako dobljene resitve
smo razdelili v dva dela: singularnega in regularnega. Inverzna Fourierjeva transfor-
macija, ki zakljuéuje obravnavani problem, je za singularni del izvedena s pomo¢jo
transformacije integracijske poti tako, da dobimo znano integralno reprezentacijo
Besselove funkcije, za regularni del pa jo izvrsimo s pomo¢jo numeri¢ne konturne
integracije.
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