TEORIJSKA I PRIMENJENA MEHANIKA 15, pp 119-125, 1989, UDK 531.26

ON STATIONARY MOTIONS OF PLATO‘S BODIES
IN THE GRAVITY FIELD

R. S. Sulikashvili

(Received 01.10.1988)

Mechanical systems consisting of material points with equal masses located
at the vertices of regular polyhedrons (Plato’s bodies) and connected by non-
deformable weightless rode are considered. The problem of the action of higher
order moments of inertia on the motion of Plato’s bodies fixed at the mass centre is
investigated in the central Newtonian force field, i.e., with the properties of higher
order terms in the potential expansion taken into account.

Stationary motions and equilibrium positions are found and their stability is
studied. A bifurcation diagram is given on the plane of constants of energy and
area potentials.

An interesting fact is noted: for the considered bodies the dimension of a
body element (vertex, rib, face) with which the body in stationary motions and
equilibrium positions is directed towards the attrecting centre, coincides with a
degree of instability.

1. Let us consider motion in the central gravity field of a system of mate-
rial points with equal masses, located at the vertices of a regular polyhedron and
connected by non-deformable weightless rods. The mass centre of the system is
assumed to be fixed.

Let Oén¢ be an inertial coordinate system with the origin at the attracting
centre O, Gzyz a coordinate system with the origin at the mass centre G connected
rigidly with the body such that the vertex coordinates have the form [1]

a(1/V2,-1/V2,-1/V2);  a(1/V2,1/V2,1/V2);
a(~=1/vV2,1/vV2,-1/V2);  a(-1/v2,-1/V/2,1/V/2)
for a tetrahedron,;
a(l, &1,1)

for a cube;
a(£1,0,0% " "a(0, £1,0);" “a(0,0,%1)
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for an octahedron;
a(+7,£1,0); a(0,%1,7); a(0,+7,+1)
for an icosahedron;
a(£l,£1,%1); a(£r7Y,£7,0); a(£r,0,277Y); a(0, 77 £7)

for a dodecahedron. Here a is a typical body dimension, 7 = (v/5 + 1)/2. In what
follows it will be assumed that a = 1.

Distances R; from the attracting centre O to the vertices of the considered
bodies are determined by the relations

Ry =[R2+ 2(R %) + 12 = R\ /14 26(7,;) + ¢ (1.1)

where R = OG; 7; = GAj = r€j; [r = \/3/2 for a tetrahedron; r = /3 for a cube
and a dodecahedron; r = 1 for an octahedron; r = /1 + 72 for an icosahedron]; €;

and 7 = (71,72,73) are the unit vectors directed along 7; and R, respectively; A;
is the vertex; j is the number of vertices of the respetive polyhedron, € = r/R.

Force functions U; have the form

fMoM  fMyM ) R
U‘:JZ. R‘; =120 Zj:(ua,-) Y2 (i =T,5)

R

where f is the gravity constant, M, is the mass of the attracting body, M 1is the
mass of the entire system, ¢ = 2¢(7,%;) + 2.

Expanding the force function U; into a series in €, to within terms (n>3)
we obtain (N = fMyM/R):

Il = (4N/\/3_)(\/§ — 56%y17273) for a tetrahedron;

Uz = (4N/9)[18 — Te* + 35e% (7293 + ¥575 4+ 737%)] for a cube;

Us = (N/4)[24 — 21e* + 35e* (72 + 94 + ~4)] for an octahedron;

Us = (N/64){768+48(3+v/5)e? + 35(7+ 3v/5)e* + 128(5 + v/5)e® [4(78 + 48 +

13) + 35+ VB)(1{73 + 1373 + vd1d) + 365 — VB) (314 + 7373 + v21%)]} for an
icosahedron;

Us = (5N/32){128 + 482 + 63¢* + 64¢° [8(7§ + 7§ + 7§) + 72729293 + 3(7 +
VB)(i73 + 7373 +v811) + 3(7 = VB)(7iv3 + 873 + 7492)] } for a dodecahedron.

Since the gravity field is axially symmetric, force functions U; (i = 1,5) depend
only on v, (v = 1,3) and therefore all equilibrium positions of the considered bodies
are indifferent to the rotation about the radius-vector R.

In the considered approximation the motion equations of these bodies admit
the following first integrals:

H; = (1/2)J (w? + w2 +w?) = U; = h =const, (i=1,5),
K=J(w171+w272 +LU373)=IC:COHSt, 12712_-{-“)’22—}-‘)/3:1,

where J is the moment of inertia (for the considered bodies the central tensor of
intertia is spherical), @ = (w;,w2,w3) is the angular velocity vector.
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Stationary motions of the considered bodies are determined on the basis of
the Routh theorem [2]. According to this theorem stationary motions of the body
correspond to stationary values of the energy integral if it assumed that the area
integral and the geometrical integral have constant values. Thus the problem of
determining stationary motions reduces to the problem of finding stationary values
of the function

Wi=H;— MK -k)+3p(I-1), (i=15) (1.2)

where A and p are Lagrangian multipliers.

Conditions for the stationary of function (1.2) are given by a system of equa-
tions

oW, ow;

o =k=K =0, o =l=1=10,
oW; 0H; 0K 1 09I

— f— — —_— 1.3
07y Oy Aa'fu r 2#3%’ 0 9
oW; o, B
6wy — J(Wy =i A'ry) = 0.

The stationary motion equations (1.3) admit the following one-parameter
(wy = Ay, A is an arbitrary parameter) families of solutions:

for a tetrahedron
71=0, 12=0, 1a==%1, u=0, (123) (1.4)
71=1/\/§s 72=1/\/§, 73=1/\/§: 3 ay e
pu=JA — —Ne,
n=-1/V3, 12=-1/v3, 1=1/V3 : (1.5)
n==1/v3, 1=1/V3, =13,

20
= J)? 4+ —Ng3.
n=-1V3, 1= ~1/V3, 7= "1/\/5} y

3 (1.6)
for a cube and a octahedron
n =0, 72 =0, va==%1, p=JI+35Ne? (1.7)
1 1
=9, =+—, =+— = JA2 4+ 70Nt 138
Vi 72 /2 73 H + e (1.8)

\/5)
1 1 1 9 i
‘r1=i$, 72=:i:-\/—?—). 73=:|:ﬁ, p=JA" +(35/3)Ne (1.9)

for an icosahedron

vi =0 y2=093=2=%1, p=J>+96(5+v5)Ne® (1.10)

/3-—- 5 /3 9 272

711=0 T2=%# sf, Vo ="k +6\/_, [.t=J/\2+TN66 (1.11)
9+ vo 55—+

n=0 meay B [BVE L e, (1)
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for a dodecahedron

NM=0 12=0,73==%1, u=J)+480Ne° (1.13)
5 —
N=0 p=xi 4;0\/5’ e 10‘/5, = JA\?+408Ne®  (1.14)
— 14
Nn=0 2=+ X 6\/5, 13=1=% 3+6\/5’ ﬂ=Jz\2+—§N€6.(1.15)

The symbol (123) denotes the circular rearrangement of indexes 123. Note
that for A = 0 these motions degenerate to an equilibrium position of the given
bodies.

Using (1.1), we calculate distances R; and thereby the orientation of the con-
sidered bodies with respect to the attraction centre. There are only three types
of orientation of the considered bodies. In the case of the first orientation type
(solutions (1.4), (1.7), (1.10), (1.13)) the body is directed towards the attracting
centre with its rib. These solutions are said to belong to type A. The radius-vector
R then passes through the midpoints of this and the opposite ribs. It is obvious
that the number of such solutions is equal to the number of ribs.

In the case of the second orientation type (solutions (1.5), (1.8), (1.11), (1.14))
the body is directed towards the attracting centre with its face. These solutions
are of type B. It is characteristic of this orientation that the radius-vector R passes
through the centre of this face and through the opposite vertex in the case of a
tetrahedron and through the centres of parallel faces for the other bodies. The
number of such solutions is equal to the number of faces of the given body.

In the case of the third orientation type (solutions (1.6), (1.9), (1.12), (1.15))
the body is directed towards the attracting centre with its vertex. These are solu-
tions of type C. For this orientation the radius-vector R passes through this vertex
and the centre of the opposite face in the case of a tetrahedron, and through the
opposite vertex for the other bodies. The number of such solutions is equal to the
number of vertices.

2. Stability is investigated with respect to the values w1, W, W3, 71,72, Y3
For this we calculate the second variation §2W; of the function W on the linear
manifolds é K = 0 and 61 = 0.

For sclutions (1.4), (1.7), (1.10), (1.13) these variations have respectively the
form

Wy =J EQE + (2/V3)NE3[(672)? — (673)?,
§°Wa=J > Q2+ (140/9) Ne*[4(672)% — (671)?),

3
§*Ws=J) Q%+ (35/2)Net[(671)? — 4(672)7,

v=1
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3
8*Wa=JY Q% +24(5 + VB)Ne[(V5 + 1)(61)* — (VB = 1)(672)");
=1

[

82Ws =7 Q2 +60Ne®[(V5 +1)(671)* — (V5 — 1)(672)°).

From these expressions it follows that the instability degree is x = 1. Therefore
stationary motions (respectively, relative equilibria) of type A are unstable.

For solutions (1.5), (1.8), (1.11), (1.14) the second variations have the form

3
Wy =J Y 02 — (4/V3)Ne®[3(672)? — (615)°],

v=1

3
Wy = J 5 Q2 — (280/9)Ne[(671)* + (672)°],

v=1

3
682Ws =J Y Q2 — (140/3)Ne*[3(611) + (672)°),

v=1

5 Wa=J Y Q2 - (16/3)Ne®[2(671)* + 3(3 — VB)(612)’),

=1

3
Ws =J Y Q2 — (48/5)Ne®[2(671)* + (5 + V5)(672)").

v=1

Thus for stationary motions of type B the instability degree is x = 2. In this
case the Routh theorem and its inversion do not allow one to conclude whether the
stationary motion is stable or unstable, but from the consideration of equations of
the first approximation it follows that stationary motions of type B are unstable.

For solutions (1.6), (1.9),(1.12), (1.15) the second variations have the form

3
62Wy = 7Y Q% — (4/V3NE¥((6n)? +3(672)°),
v=1
3
82W, = J $ 02 + (1120/27)Ne*[3(671)2 + (672)2,

v=1
4

3
8*Ws=J Y Q2 +35Ne[(6m)® + (672)°),

v=1

3
W=7 ) Q2 + (48/5)Ne®(2(872)” + (5 + VB)(672)7),

v=1

a
82Ws = J 3 Q2 + (16/3)Ne®(2(671)” + 3(3 — V5)(672)?.

v=1
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From these expressions it follows that the instability degree is x = 0 and
therefore stationary motions of type C are stable. Here Q, = bw, — Aé7,, where
6w, and év, are variations of the variables wy and v, (v =1,2,3).

‘From the foregoing discussion we make an interesting conclusion: for Plato’s
bodle.s the dimension of a body element (vertex, rib, face), with which the bodies
are directed towards the attraction centre, coincides with a degree of instability.

Our results are also valid for bodies of the mentioned type on the circular orbit.
There are no centrifuga and Coriolis moments of force in the orbital coordinate
system because all principal moments of body inertia are equal [3].

3. The bifurcation dia-
gram on the plane of constants AN
of the energy integral h and the
area integral k consists of three h | p
parabolas Py (a = 0,1,2) (Fig. 2| P R
1) which are determined by the
relations

ha = k? /20 — I (1.16)
(=15 a=0,1,2) ky | k1| kg

V

where to the index o« there cor- k
respond instability degrees of hy
the considered stationary mo-

tions and equalibria, on solu- B
tions C, B and A. .

These parabolas correspond hol—
to stationary motions (1.4) to
(1.15) whose vertices correspond
to the equilibrium positions of
Plato’s bodies.

Fig. 1

Parabolas (1.16) form a bifurcation set on which the rearrangement of possible
motion domains takes place [4]; these domains are determined by the relation

-Ui<h  (i=1,5).

Note that in the given problem the altered potential energy coincides to within
a constant with the potential energy.

The analysis shows that above the parabola P, the domain of possible motions
if the entire sphere S? = {y1,v273; v + v + 13 = 1}.

Between the parabolas P; and P, the domain of possible motions is a sphere
with holes whose number is four (S '\ |J{ D,) for a tetrahedron, six ($*\U; D)
for a cube, eight (S?\ |J; D,) for an octahedron, twenty (52 \ U¥D,) for an
icosahedron, twelve (S?\ |J;? D,) for a dodecahedron.

Between the parabolas P; and Py domains of possible motions are disks whose
number is equal to four (U? D,) for a tetrahedron, eight (U? D,) for a cube, six
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(LS D,) for an octahedron, twelve (U;* D,) for an icosahedron, twenty (U¥D,)
for a dodecahedron.

Below the parabola Py no motion can occur.

Note that for the considered problem the results obtained are presented in
greater detail in the author’s papers [5,6,7)].
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O CTAIUOHAPHHX OBUXEHUAX TEJI IINIATOHA
B IIOJIE CUJI TATOTEHUA

PaccMaTpuBaloTci MEXaHWIECKHUE CHCTEMH, COCTOAMME M3 MaTepHalIbHHX TO-
YeK paBHHIX Macc, pacrioJIOKCHHHX B BEpUIMHAX MPaBUIbHHEX MHOIOIPaHHUKOB (Tell
IInaToHa) ¥ COEAMHEHHHX HEBECOMHMH HeOeOpMUPYEMBIMU CTEPKHAMM.

HCCIICI[YIOTCH jalada O BIMAHMK MOMCHTOB MHEPLUMH BLICIIUX ITOPAIOKOB (T.C.
C y4eTOM CBOWCTB CJIaraéMBIX BHCUINMX IOPANKOB B Pa3jIORCHHU HOTCHILH&JI&) Ha
OBUXEHHUE 3TUX TeEJI, 3aKPCINVICEHHRX B LICHTPE MacC B IICHTPAJIbHOM HBIOTOHOBCKOM
I10JIE CHIL.

HanneHu cranyoHapHHE OBMRECHUA U paBHOBECHHE ITOJIOXECHUA M MCCJIEOBaHA
MX ycTordMBoCcTh. [IpuBeneHa 6MypKalMoOHHAA QUarpaMma Ha IJIOCKOCTH KOHCTaHT
MHTErpaJloB 3HEPruy M IUIOmancn.

OrMedaerca MOGONHTHHA $akT: WUIA paccMaTPpUBAMHX Tell pa3MEPHOCTb dJie-
MEHTa Tesia (BepllMHa, peGpo, rpaHb), KOTOPHM OHO OOpameHO Ha CTallMOHAPHHX
" IBUAKEHUAX M PaBHOBECHHIX TOJIOXEHUAX K MPUTATMBAIOMEMY IIEHTpY, COBIAfAET CO
CTEIEHBIO HEYCTONIMBOCTH.
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