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Introduction. Among various direct methods of variational calculations for ap-
proximate solving of mathetatical models of physical processes, an important place
is taken by a vanishing parameter principle of B. Vujanovié [1], (2], [3]. It was orig-
inally developed for the purpose of studying the problem of non-stationary heat
conduction and it soon turned out that it can be successfully applied to the study
of the boundary layer problems [4], [5], [6] as well as of those in other fields of
physics [7], [8]. Although it quickly leads to highly accurate approximate solu-
tions, it still sets the serious problem of determining Lagrange’s function, that is,
of that part of the action integral which is to reproduce the process equation from
the stationarity conditions and probably the natural boundary conditions as well.
Not only that there is no universal algorithm for determining Lagrange’s function,
but for the same equation many functionals can be defined and introduced into
the action integral thus leading to the setting-up of the process equation from the
stationarity conditions. The question still remains which of these functionals is
optimal in view of obtaining the best approximate solution.

This paper presents a further elaboration of Y. T. Glazunov’s ideas (8]. It
presents a possibility of automatic creation of Lagrange’s density for certain classes
of partial differential equations used to describe many non-stationary and non-
linear processes where the applied procedure is prescribed by a vanishing parameter
principle.

1. Determination of Lagrange’s Functions. The stationarity condition of

the action integral is
d = ff LdVdt, (1.1)
tJv

where L is Lagrange’s function, V' is the field in which the process is being studied
with standard restrictions for variations on the contour S of the field V, leading to
Euler-Lagrange’s equation
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In the equation (1.2) f = f(,t) is a physical quantity to be studied, the points
denote its derivatives with respect to the time t, z; are the space coordinates,
whereas n denotes the order of the highest derivative dominating in Lagrange’s
function, that is, the one of the function f with respect to the space coordinates.

Lagrange’s function of the form

2 2 2
S Ef(T){m(f)%‘t_f +b(f)% - D[f(wnt);ws;t]} et (1.3)

where k is a vanishing parameter, D[f(zi,t);zi;t] denotes a certain differential
dependence of the field f(z;,t) on the space coordinates z;, introduced into Euler-
Lagrange equation (1.2), which, carrying out the procedure prescribed by a van-
ishing parameter principle, leads to the equation of the form

o(NSL +4n % - Dls(en, ;2511 = 0 (1.4
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The evidence for this statement is quite simple. For brevity’s sake, let

2
o) =a(NSE +8) L - Difi, 52 (15)
The derivatives domineering Euler-Lagrange’s equation (1.2) are
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and when they are brought into it, they lead to

2
+ kz% [®(f)]et* + Qk% [®(f)]et* + ®(f)etl*

E 3 n i 35 6 1 et/k_
i {Z 2 (92:)7 9]0 f/(0a:)i] [a(f)“’(f)]} =i

1i=1 j=1

¢2(f)] BN,

By dividing the obtained equation by exp(t/k), and then by carrying out the bound-
ary procedure that k — 0 as it prescribed by a vanishing parameter principle, we
obtain ®(f) = 0, that is, with regard to (1.5)
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we obtain exactly the equation (1.4).
By applying the same procedure on Lagrange’s function of the form

2
L= :%i(fj{b(f)%% - D[f(n:,-,t);:r,-;t]} ek, (1.6)

we come to the equation
0
b(£) 2L~ DIf (o, ;2i51] = 0. (1.7

Therefore, we can conclude that the equations of the form (1.4) that is, of the
form (1.7) are truly obtained from the action integral stationarity conditions (1.1)
by applying Lagrange’s functions (1.3) or (1.6), and after carrying out the procedure
prescribed by a vanishing parameter principle. Thus the problem of determining
Lagrange’s function for the given classes of non-linear and non-stationary partial
differential equations should not be posed any longer, but the question of choosing
a trial function which is to reproduce a sufficiently good approximate solution still
remains.

2. Approximate Solution. The approximate solution is required to satisfy both
the process equation and the boundary and initial conditions as well, within the
limits of the prescribed accuracy. For different processes, no matter their being
described by the same equation, there are different boundary conditions and this,
in general, prevents defining of an algorithm showing, in all cases, the way to attain
an approximate solution of sufficient accuracy. As for the choice of a trial function,
there are certain recommendations (methods) widely used today, such as Fourier’s
method of variables’ separation, Ritz’s method, Kantorovich’s method of partial
integration and others.

The effective use of the suggested procedure for determining approximate so-
lutions of the processes described by the equations (1.4) or (1.7) with respective
boundary and initial conditions, requires a trial function in the form that allows in-
tegration with respect to the space coordinates when Lagrange’s function is formed
in the above described way and then introduced into the action integral. Then
the integration is performed with respect to the space V and after that the action
integral is reduced to the form

ta

I= [ L*(q, dsdis)dt. (2.1)

t1

Lagrange’s function in the integral (2.1) depends on the time functions g;(t)
and their derivatives which correspond to the independent coordinates of the me-
chanical system. The integral stationarity condition (2.1) leads to classic Lagrange’s
equations
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which reproduce a system of ordinary differential equations with respect to the
unknown functions ¢;(t) combined with the space functions in a trial solution.

0, (2.2)
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The trial function should be thus formed as to be specified with respect to the
space coordinates, whereas the time functions ¢i(t) should remain unknown. While
considering this function all known, information about the process, obtained from
various sources (mostly by experiment) should be brought in, whereas in numerous
situations the “smoothness” conditions are precious signposts directing us towards
a good choice of functions. It is very useful to make the space coordinates functions
satisfy the boundary conditions since in this case they need not be taken care of
any longer. The required integration with respect to the space coordinates can be
carried out by some numerical method if the form of these functions does not allow
a closed-from integration.

The initial conditions are used for determining the integration constants in
the general solutions of the ordinary differential equations system obtained fro
Lagrange’s equations (2.2). '

The enclosed illustrative examples should prove the right choice of Lagrange’s
functions in the forms (1.3) and (1.7) for obtaining approximate solutions of the
processes described by the equations (1.4) and (1.6). The common notation for
function derivatives is being used in the following examples: namely, a point over
a function denotes all its derivatives with respect to time, whereas the sign “'”
denotes derivatives with respect to the space coordinates.

3. Application to Some Problems of Non-Linear Theory of Oscillations.

3.1. Non-linear torsional oscillations of a cylindrical bar [10]. The equation of
these oscillations is of the form

6 —a?[1+ A(6")}8" = 0, (3.1.1)
and boundary conditions
0(0,t) =0 and 6(mt)=0. (3.1.2)

According to (1.3) Lagrange’s function is accepted as
2 .. 2
L:ﬁ{e_&u+xwmm}é”, (3.1.3)
2
and regarding the boundary conditions (3.1.2), the trial function is of the form
0(z,t) = f(t) sinmz, m=1,2:,.. (3.14)

By introducing the trial function into the Lagrangian (3.1.3) we obtain

! 2 .
= % [f sin mz + a?m?(1 + Am? f2 cos? mz) f sin m:z:]2e‘/", (3.1.5)

and the action integral (1.1) after the integration with respect to z from 0 to = is
reduced to

t 1.2 . 2
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The obtained action integral responding to the integral (2.1) will have a sta-
tlonary value when Euler-Lagrange equation (2.2) is satisfied, that is, the equation
in which, in this case, the Lagrangian L* is of the form

* kz 2 2¢¢ 1 2 2
L [f+amff(1+—Amf)
+ ;a m4f2(1 + ;Amzf2 o & 1y 4f4)]e'/k- (3.1.6)

By determining the necessary derivatives from (3.1.6), Euler-Lagrange’s equation
(2.2) leads to

[ 2f(l+ Am2f2) +a4m4f(1+-;—Am2+%,\2m4f4)]e‘/"

kx d° 2.2 Lo gy am
+ 5 42 [f+a m f(1+zz\m f )]c
+k1r§t- [f+a2m2f(1+ %Amzfz)]e'/k (3.1.7)
- % [j" + a’m?f (1 + i)\mzf’)] et/ = 0.

When the obtained equation (3.1.7) is divided by e'/* and when the boundary
process that k — 0 is carried out, as it is prescribed by the applied method, we

come to .
f+a?m?f + (1/4)Aa’*m?f3 = 0. (3.1.8)

differential equation with respect to f being identical to those obtained by Galerkin’s
method and the further procedure for final determination of the approximate so-
lution is the same as in this method [10]. We will not go into details about the
method here since our task is to come to the equation (3.1.8) on the basis of which
the function f(t) is obtained in order to come to the approximate solution by means
of the trial function (3.1.4).

3.2. Transferse oscillations of a non-linear elastic beam [10]. The differential
equation is of the form

i + a®u" + a?A[u""u" + 2(u")?]u" = 0, (3.2.1)
the boundary conditions are
u(0) =u(r) =0 and u"(0) =u"(7x)=0, (3:2.2)
and the initial conditions are
u(z,00=A and u(z,0)=0. (3.2.3)
The trial function is taken to be in the form

u(z,t) = f(t)sinmaz, (3.24)
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because of the boundary conditions (3.2.2), whereas the initial conditions lead to
f(0) = Ag and f(0)=0. (3.2.5)

Lagrange’s function is of the form

2 {u+02 llfl+a2A[uiIll ”-}-2(11”")2]11”} k. (3.2.6)

By determining the required derivatives from the trial function (3.2.4), Lagrange’s
function (3.2.6) becomes

k2
i = e {Asinmz — B(2cos? mz — sin? mz) sin mx}Qe‘/k, (3.2.7)

where ) ,
A=f+a’m*f and B =a?xm8f3 (3.2.8)

After the integration with respect to z from 0 to , the action integral reduces
to

2
I= /k [A2+ ~AB + BZ} Yk (3.2.9)

and has stationary value when Euler-Lagrange’s equation(2.2) is satisfied, that is,
the equation in which

p=rE la2y Lypy 5], (3.2.10)
T2 |2 4 16 -

By determining the derivatives from (3.2.10), introduced them into (2.2), we obtain

Br, 04 10,04 0B\ 5 o8],

2 Aaf (Baf+Aaf)+SBaf] (3.2.11)
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+ 5 dtz(A+4B)+k1r (A+4B)+2(A+4B)]e =il

Dividing the obtained equation by e!/*, and by carrying out boundary proce-
dure that k¥ — 0, we obtain
A+ (1/4)B=0 (3.2:12)

which, after introducing the values for A and B from (3.2.8) leads to
f+a®mif + (1/4)a?xm8f3 = 0,

ordinary differential equation with respect to f identical with the equation obtained
by Galerkin’s method. The further procedure for determining the function f is
known and it will not be pressented here.

4. Application to Non-Stationary Heat Conduction. The general form of
the equation of the heat conduction through an isotropic solid is

5} [u(T)T] = div[A(T) grad T}, (4.1)
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where T' = T'(z;, ) is a temperature field, u(T') is internal energy and A(T') is a heat
conductivity coefficient. Supposing that the velocity of the internal energy change
is small, du/8t — 0, the equation (4.1) is reduced to

u(T)%Z: = div[\(T) grad 7). (4.2)
The equation (4.2) belongs to the class of the type (1.7) and therefore, accord-
ing to the expression (1.6), its Lagrange’s function is

k oT

2
L= W {u(T)a- - div[MT) gradT]} etk (4.3)

When Euler-Lagrange equation is formed by means of the Lagrangian (4.3)
and when the procedure prescribed by a vanishing parameter principle is carried
out, the process equation (4.2) is obtained.

4.1. Heat conduction through laterally isolated semiinfinite solid with
the front surface kept at the constant temperature T,. A semiinfinite bar is
laterally isolated and it has con-
stant termo-physical characteris-
tics. The process equation (4.2)
in this case is reduced to |

T 92T llr:::;::::::::;::'_:'T'r':‘:‘:':':'E,
5 Yoz 0, A=) oo . N TR .
o . T-Ts Pty
therefore the action integral is of XA NI LI S M0
the form X \
l
/* /‘ k(0T a’ﬂr)z £ |
i= | =07 ) X
o Jo 2\ Ot dz? |

xet/¥dzrdt, (4.1.1)

where 8 = 6(t) is the penetration depth. The area z > 6 is not within the reach of
the temperature shange. The initial temperature is equal to zero and the boundary

conditions are

T(0,t) = T, = const, T(0,t)= 0, %l = (4.1.2)

By assuming that the trial function T(z,t) has the form of the second order
polynomial and by respecting the boundary conditions (4.1.2), the trial function is
written in the form

T =T,(1-z/6)%. (4.1.3)
By introducing this function into the action integral (4.1.1) and by integration with
respect to z from 0 to f we obtain

I=[‘£(0—3A2—162AB+329)<3'/" dt (4.14)
o 2\30 3 e
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where A = 27,6/6? and B = 24T, /62
The integral (4.1.4) will have a stationary value when Euler-Lagrange equation

o0L* daL*

—— 4.1.5
00  dt 96 g ( )
1s satisfied, when
.. (ia-'*A? _Llpup +6B? etk (4.1.6)
2\30 3
When the equation (4.1.5) is formed by means of (4.1.6), and when it is divided
by e!/* and the boundary process k — 0 is carried out, we obtain #8 = 5«, hence,

¢ = v10a#, and the solution is identical to the one known in the references [3],
[11]. By putting the obtained function § = 6(t) into the trial solution (4.1.3), the
approximate solution is obtained.

4.2. The case of constant internal energy and a heat conductivity coefficient
lineary dependent on temperature. The differential equation in this case is of the

5 or o orT

UQE = a ,\(T)g:; ’ (421)
where

A(T) = Xo(1 + BT/ Tp). (4.2.2)

The boundary condition is non-linear and of radiation form
oT m am
/\(T)a- =h[(T+To)™ -63], forz=0 (4.2.3)

where h is Einstein-Boltzmann’s constant, 6, is an initial apsolute temperature of
the external surroundings, whereas m defines the body to be studied (1 < m < 4
— grey, m = 4 — apsolutely black body).

The trial function is taken in the form
T(z,t) = —(To— q¢)(1 — z/6)", (4.2.4)

where Ty is an initial body temperature, ¢ = ¢(t) is a surface temperature and
@ = 6(t) is the penetration depth. Because of thus accepted trial function the heat
conductivity coefficient (4.2.2) becomes

MT) = Ao [1 = %(T0 —q) (1 = %)n} (4.2.5)

whereas Lagrange’s function (4.5) after introducing (4.2.4) and (4.2.5) attains the
form

L= g{q(l-g)n —E%Jé(l—g)n_lﬁ (4.2.6)
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0

By introducing the notations

_n(To—-gq), _ Ao n(To —gq) B
A = TH, 3= ;J;T and C = F(Qn — 1)(Tg = q) (427)

the action integral

ty (]
= f f Ldedt, (4.28)
t1 0

where L is given by (4.2.6), becomes

I= f:/ { (1 = —)2ﬂ + A? (1 = %)2n_2z2 (4.2.9)

e [(n . (1 ) %) 2n—4 = 1)(1 B %)Sn-4+ o2 (1 _ %)%-4]

5 2Aq-,(1 ) %) 2n-la: +2Bj§ l(n _ 1)<1 _ %)ﬂﬂ - C(l B %) 2n—2]

2n-3 3n-3
—2AB(n — 1)(1— g) :c+2ABC(1— -'z-) a:}e‘/" dz dt.

After the integration with respect to z from 0 to 6 the action integral (4.2.9)
is reduced to

B[ ¢ A 2[(n=-1)?% 2 C?
I_,[ 2{2n+1+n(4n2—-1)+B l?n-—3 —3C+4n—3]

1
+2Bd(1- c ) ABS 24BC6

A _ABo
n(2n+1) 2n—-1 2n—-1 (3n-1)(3n-2)

hence Lagrange’s function L is directly obtained and used to obtain Euler-Lagrange
equation for the coordinate #. That is virtually whole subintegral expression (with-
out dt). By determining the required derivatives dominating Euler-Lagrange’s equa-
tion for the function L, by carrying out the prescribed procedure and by introducing
the notations (4.2.7) we finally obtain

2To—q) 6 ¢ -1 L .8 2(2n - 1)(To —g) | Ao n(To — g)
4n2-10 n@2n+1) [2n—1" T, Bn-1)(3n—-2) Juy 62
an ordinary differential equation with respect to unknown time functions # and q.

In order to solve the set-up problem it is necessary to find another equation or some
connection between the unknown functions.

The Lardner’s suggestion has been accepted according to which the connection
between functions #(t) and g(t) is made by means of the boundary condition (4.2.3).
By using (4.2.4) and (4.2.5) this connection is

g 2onTo—q) 1-(B/To)(To—q)
h g® =g

et/¥ dt,

=

(4.2.11)
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When it has been used and after non-dimensional quantities have been introduced
z=¢q/Ty and zq=vo/Tp
the differential equation (4.2.10) becomes

1 2n [2(1-2)—-1 m(l—2z)z""!
_2n+1+4n2—1[1—(1—z) T am g ]
S Y
T (1-2)[1-B(1-2)2|2n-1 " "(Bn-1)Bn-2)|dz’

(4.2.12)

where 7 = (R2T2™ 1) Jugug)t.

Studying the same problem with specified values: § =0, n = 2, m = 4 and
29 = 0, Rafalsky and Zyskowsky [13] have used Biot’s method and obtained the
approximate solution

(1 —887)2% + 24.522 — 572+ 31.5 = 0. (4.2.13)

When the same pararmeter values introduced into the equation (4.2.12) and
after the integration is performed by considering condition ¢(0) = 7} the aproximate
solution is obtained in the form

(1=1707)2% + 212% — 50z + 28 = 0,

which is identical to the solution obtained in the reference [14].
All these examples show:

1. that the equations of the form (1.4) and (1.7) are obtained by using La-
grange’s functions of the form (1.3) and (1.6) from the action integral stationary
conditions and by applying the procedure prescribed by a vanishing parameter
principle;

2. that the approximate solution of the non-stationary and non-linear pro-
cesses is relatively simple. Although the given cases are one-dimensional, due to
the computer’s ability to perform a numerical integration of complex integrals, the
described procedure can be used to slove two- and three-dimensional spatial pro-
cesses. The greatest trouble practically lies in the integration with respect to the
field V, but it can be eliminated when computers are being used.
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OOVH AJI'OPUTM IUUIAA ONIPENEJIEHUA ®YHKIIUHU JIATPAHXA
ITPU UCIIOJIbLBOBAHWUU BAPUALLTMOHHOI'O ITPMHIIUIIA
C UCHESAKIIUM ITAPAMETPOM

IIpy wmcrionp3oBaHMM IIPAMBIX METOLOB BapHMAaLlMOHHOIO paciera WA IIpH-
GJIMAKEHHOTO pelleHUA Nu@epeHIMaNlbHEX YpaBHEHMA B YaCTHRIX IIPOM3BOAHHIX, C
TIOMOIIBIO KOTOPHIX OMKMCaHH MHOrMe QU3NYecKUe MPOLIECCH], OIpeaeeHre QyHKIIM
JlarpaHxa INpeOcTaB/aeT CEPbe3HYI0 TPYOHOCTD.

B cratee paccMarpuBaeTcd BOIMOKHOCTbL ITPAMOM MNpoayKuuu QyHKuum Jla-
rpaHXa U3 paBeHCTBa IIpollecca, Korga AJiA IpUOJIMAKCHHOI'O pElleHUA ypaBHEHUMA
IpOLLECCOB IIPUMEHAIT BapHAIlMOHHHA IPUHIMII ¢ MCYE3alMMUM IapaMeTpoM B.
BysaHosuda. C MOMOMBIO 9€THpPEX WIIIOCTPATUBHHX IPUMMEPOB OGHApYyXeH CIIOCOD
ynoTpeO/IeHUA OaHHOI'0 IpHMepa.

JEDAN ALGORITAM ZA ODREDIVANJE LAGRANZEVE FUNKCIJE
PRI KORISCENJ U VARIJACIONOG PRINCIPA
SA ISCEZAVAJUCIM PARAMETROM

Pri koris¢enju direktnih metoda varijacionog ratuna za aproksimativno resa-
vanje parcijalnih diferencijalnih jednaéina kojima su opisani mnogi fizi¢ki procesi,
ozbiljnu tedkoéu predstavlja odredjivanje Lagranieve funkcije.

U ovom radu je pokazana mogucnost direktne produkcije Lagranzeve funkcije iz
jednacéine procesa, kada se za aproksimativno resavanje jednacina procesa upotrebi
varijacioni princip sa idCezavajuéim parametrom B. Vujanoviéa. Kroz &etiri ilustra-
tivna primera pokazan je nacin upotrebe prikazane metode.
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