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SOLUTION OF SEN-DUNN VACUUM MODEL
G. Mohanty and U. K. Panigrahi

(Received 22. 09. 1987.)

In this paper we consider the scalar tensor theory of gravitation (proposed
by Sen and Dunn [1]) in a modified Riemannian manifold in which both scalar
and tensor fields have intrinsic geometrical significance. The scalar field in this
theory is characterised by the function X°=X°(X?) where X7 are the co-ordinates
in the four dimensional Lyra Manifold and the tensor field is identified by the
fundamental metric tensor g;; of the manifold.

In this theory we assume that the spacetime is described by a metric with two
degrees of freedom whose form in hyperbolic canonical co-ordinate system [2] is

ds? = e24-2B(dt? — dr?) — r2 e2B 402 — e2B (Cd 0 + dz)? (1)

where A=A(r, t), B=B(r, t) and C+C(r, t).
B and C represent first and second degree of freedom respectively. Here co-ordina-
tes r,0, z and ¢ correspond to X', X2 and X* and X* respectively.

In Einstein theory it is shown [3], [4] that massive scalar field can not be a
source of gravitation in the spacetime described by (1). Hence the Einstein’s field
equations
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and Klein-Gordon equation g¥; ¥;;=0 (hereafterwards suffix after the field variable
indicates partial differentiations and semicolon denotes covariant differentiation)
for massless scalar field V in this theory for metric (1) can be written explicitly in
the following form:
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I
and AV=0 (7)
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Hereafterwards the suffixes 1 and 4 after the field variables indicate partial deri-
vatives with respect to r and  respectively. Equations (2) and (3) which determine
Band C are identical to those of empty spacetime for the metric (1). Equation (6)
being obtainable from the rest of the field equations is redudant. Now, 4 can be
obtained from the equations (4) and (5) as
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Thus the Einstein’s cylindrical anisotropic inhomogeneous microscopic model
in general is governed by the equations (2), (3), (7) and (9). However, for any
solution ¥ of the equation (7), one can generate the corresponding solution of
Einstein massless scalar field equations. In particular, considering V=aJ(kr)cos kt
(a and k are constants and Jj is the Bessel function of zeroeth order) as solution
of equation (7), one get from (2), (3) and (9)
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The field equations given by Sen-Dunn [1] for combined scalar tensor fields
are
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where W=3/2, Tj; is the energy momentum tensor of the fields, R;; and R are res-
pectively the usual Ricci tensor and Riemanncurvature scalar. In the matter free
region these field equations reduce to '
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The explicit form of these field equations (12) in the spacetime (1) can be given in
the following forms:
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Where X0=eF, (17)

1
The condition of integrability for ‘A’ is satisfied if A H=0.
Thus the Sen-Dunn Vacuum model is completely governed by the equations
(13) to (17).
In view of the structure of the field equations of both models one can
assume that the Sen-Dunn Scalar field is a function of Einstein’s scalar field as

H=f(V). (18)
With the help of equation (18), equation (17) yields
fg'ViVi+f gV, ;=0. (19)
Klein Gordon equation for the spacetime (1) is of the form
giV,j=0" -

and the scalar field is assumed to be nonnull (i.e., g/V;V;=0) as the null massless
scalar field does not survive in the spacetime (1). Then the equation (19) reduces
to

f‘.’ ’ s 0 (20)
Integrating equation (20) we obtain
H=mV+n 21)

Where m and n are arbitrary constants. The arbitrary constant m can be easily ob-
tained by comparing the field equations of both models. Thus, we get

W T
e i=)—1. (22)

H—iV defined by H:i\/

With the help of (22), one can generate solution of vacuum Sen-Dunn scalar tensor
field equations from those of Einstein’s massless nonnull scalar field equations and
vice-versa.
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Now using (22) in (2), (3) and (9), one can get the solution of vacuum
Sen-Dunn model as

C=C(r—p), B=i—1nr+b dnd

I
AL, _%eu f C*2 iy — %V a2, J;? (kr) cos (2 kt)

- -Zfaz k2 r2 [{Jy (kr) Y2 = J, (kr) Jy” (kr)] — (23)

Where u=¢-r.

Similarly one can get the corresponding solution for the case C=C (t+r).
It may be verified that the solution (23) can be obtained by solving directly the
field equations (13)—(17).

The immediate use of the transformation (22) is in obtaining the solution of
Sen and Dunn Scalar tensor theory from any massless nonnull scalar solution of
Einstein’s theory. The null scalar field in Einstein’s theory for the spacetime (1)
does not survive and it is either of the form V= V(r — t)=constant or V=V(r4-t)=
=constant. In Sen-Dunn theory the null scalar field also behaves alike. Thus null
scalar field in both theories does not survive for the spacetime (1). Moreover,

it may be easily verified from the field equations (2)—(7) that if AO, Bc", Cand V is
a solution of nonnull massless scalar field in Einstein’s theory then 4—A4 + f (t—r),

B, Cand V (or A=A+g(t+r), }5', Cand Iof) is also a solution which may be trans-
formed by (22) to the corresponding solution of the Sen and Dunn’s theory where
f and g are arbitrary functions of their arguments represent monocromatic out
going and in coming waves respectively. Besides the generation of solutions one
may also use the transformation obtained in this paper in discussing the singula-
rities of the two theories as the transformation bein g linear is singularity preserving.
Thus the solution in both theories will have same singularities.

One may hope that the consequence of this paper will lead to a deeper under-
standing of the relation between Einstein’s theory of gravitation and scalar-tensor
theory of Sen and Dunn.
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