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Preliminaries

As it is well known, the energy method gives sufficient conditions for non
linear stability in the mean — for instance in fluid dynamics — once we have chosed
a prefixed Liapunov’s functional as a measure of the perturbations [1]... [9]
and this stability is closely connected to the chosen measure [10] [11]. Moreover
variational methods gives optimum sufficient conditions for this stability, once we
have chosed as a measure of the perturbations almost prefixed Liapunov’s fun-
ctional, depending on the choice of suitables positive coupling constants (maximum
variational problems) [12] ... [16].

But which is the best measure for the best stability?
Of course the measure that gives unconditional stability!

If we consider a parametric family of measures depending on not prefixed
constants, does exist subfamilies of best measures, or at least one best measure,
such that we have unconditional stability?

The aim of the present paper is the answer to this question.

We shall prove that, at least in some cases, for instance in hydrodynamics
and in MHD of dusty gases, there exists the possibility of choice of sui table measures
to have unconditional stability, Indeed we have considered dusty gases in aplane
layer and in an arbitrary bounded domain, according to Saffman’s mathematical
model [17]. We have introduced a parametric family of energy measures and we
have investigated some non linear stability problems to laminar flows in the layer and
in the above arbitrary domain, in order to find best measures which assuies uncon-
ditional stability. The following results are obtained: there exist a subfamily of
measures such that laminar dusty gas flows in the layer, with rigid and fixed walls,
are unconditionally stable to non linear — onedimensional as well as tridimensional

(*) Work performed under the auspices of the G.N.F.M.—C.N.R. and by the grants 40%,—60%,
of M.P.I.—Italy. ‘



60 M. Maiellaro — E. M. Valentini

— perturbations. Moreover there exists a subfamily of measures such that, in pre-
sence of a constant external magnetic field and in the isotropic case, laminar electro-
conducting dusty gas flows in the layer with rigid fixed and conducting walls, are
unconditionally stable to non linear onedimensional perturbations, as well as to
non linear tridimensional perturbations. We have unconditional stability to tri-
dimensional perturbations, even for the MHD dusty gas flows into an arbitrary
bounded domain. Although, in these tridimensional cases, the affirmation is true
only for a suitable subclass of MHD flows: therefore it leaves an open problem.

Introduction

The interest in viscous incompressible fluids with suspended particles (dusty
gases) was prompted by the works of Kazakevich-Krapivin [18] and Sproull [19].
The first ones studied the aerodynamic resistance of a dusty gas flowing through
a pipe. Their studies can be expressed as follows: the aerodynamic resistence of
a dusty gas flowing through a pipe is less than that of a clean gas. The second one
has observed that adding dust (talc for instance) to air flowing through a pipe, it
can be appreciably reduced the resistance coefficient. These observations means
that the pressure gradient required to maintain a given volume rate of flow is re-
duced by the addition of dust. For instance, when a dust concentration of 0.25
Kgm/m3 was introduced, the required pressure gradient to maintain the original
flow rate was reduced by 13%,. Sproull noted that these experimental results present
a paradox, that is the increased density of a dusty gas, as opposed to a clean rate,
would require a suitable increased pressure gradient, to maintain the given flow
rate, assuming constant the other parameters of the system. Sproull’s interpretation
of this phenomenon was that the presence of the dust implies a viscosity reduction,
i.e. the viscosity of a dusty gas is less than the viscosity of the corresponding clean
gas. In a paper dated 1962. [17] Saffman has pointed out the study of dusty gases
on the basis of a suitable mathematical model. In his paper Saffman refused Sproull’s
argument concerning the viscosity reduction by observing that Sproull’s explana-
tion of this effect contradicts Einstein’s formula about the viscosity of a suspension,
according to which the viscosity of a dusty gas should be increased by a factor
proportional to the concentration by volume of the dust particles. In his paper
Saffman considers the problem of the stability by investigation the (linear) stability
of plane laminar dusty gas flows and the effects of the dust particles on the critical
Reynolds number from laminar to turbulent flow. The conclusion was that a dust
particle in a gas has much larger inertia than the equivalent volume of gas and
therefore will not partecipate as readily in the turbulent fluctuations: thus the re-
lative motion of the dust particles with respect to the clean gas dissipate energy
because of the drag and so extracting energy from the system. Hence coarse dust
particles have a stabilizing effect on the dust-gas system. On the contrary he proved
that fine dust destabilizes the flow. After Saffman’s paper, several ones [20] . . . [30]
have been published on the basis of his model. But, for that is at our knowledge,
non linear stability problems have been considered only in a paper [27], in which,
unfortunately, there is a mistake, as we will show in a later work.

In the present paper we study, for laminar dusty gas flows, some non linear
stability problems that clearly are important, for instance, in the getting-rid of
pollution problems, even in order to find the best measure of the perturbations for
the best stability. The paper develops in five sect.s. The first one is devoted to the
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equations of the incompressible dusty gas flows, according to Saffman’s mathema-
tical model. In the second one we study non linear energy stability of laminar flows
in a plane layer to onedimensional perturbations on initial data, in order to give
stability conditions to two measures. In the third section we study the stability
of the above flows to tridimensional perturbations. The fourth section is devoted
to the study of non linear stability of an electroconducting dusty gas in the layer,
in an external constant magnetic field and in isotropic case, to onedimensional per-
turbations. In the fifth section we investigate the stability of a general MHD iso-
tropic dusty gas flow in an arbitrary bounded domain to tridimensional perturba-
tions. We find, in some cases, suitables best energy measures with respect to which
there is unconditional asymptotic exponential stability; including the investigation
for unconditional stability of the MHD clean gas flows and, in particular, for Hart-
mann’s flows, in the final remarks of the paper.

1. Saffman’s mathematical model

The equations that we shall use to represent the motion of a dusty gas, follo-
wing the Saffman’s incompressible model [17], are:

P (%X—FV VV) —V,+uwAV—-KN(V-o)
S
1 vV-V=0
(1) 5o
mN(EJF'v-V‘v):KN(V—'v)
Vo=

In these equations V and v are the gas and the dust velocities respectively.
N is the number density of the dust particles, each of mass m. K is the Stokes coe-
fficient of resistance and p, ¢, u, are pressure, density, viscosity of the gas. In order
to formulate the problem in a simple way, some simplifying assumptlons are made,
following Saffman, such as: the dust particles are uniform in size and shape and
spherical of radius a, so in this case the Stokes drag formula gives K=6mau; more-
over for sufficiently small particles, the velocity of sedimentation will be small,
compared with a characteristic velocity of the flow and can be neglected. Then in
a particular steady state the dust particles move along the streamlines with the
velocity of the gas (v=V) and the number density N is constant along the stream-
lines; indeed we shall assume that N is constant everywhere [17]. The following

parameters will be useful for the study: v=-""is the kinematic viscosity of the

e
clean gas, r=KN/p (dimensions of frequency), T=m/K (dimensions of time) is
called relaxation time of the dust particles; f=mN/p=r < (dimensionless mass
concentration of the dust) and s=1/z. Finally it is supposed that the bulk con-
centration (by volume) of the dust fp/p;, where p; is the density of material in the
dust particles, is very small, so that the effect of the dust on the gas is equivalent
to an extra force KN (V — o) for unit volume.
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2. Non linear stability of dusty gas flows in a plane layer to
onedimensional perturbations

Let’s consider now laminar flows, in which the streamlines are straight pa-
rallel, in a plane layer with rigid and fixed walls y= + d.

To this end we shall consider solutions of the system (1) belonging to the
following class:

(2) {V=V(, Di; v=v(y, 1)i; p}
If we replace (2) in system (1), we obtain:
oV 1 op o2V

ot " ox Yoy 1Y
3 e
- =sF 1)

with the boundary conditions:
(4) V(+d, t)=v(+d,t)=0, (&[0, + oo]

Of course this class is not empty. In fact to this class belongs the steady dusty
gas flow (of Poiseuille type)

(Vo= (-
5) g
( .
ox
and the equilibrium solution V=2=0, p=—p,.
Let
(6) U@, 0 u(y, Ni; ©)

be a class of perturbations to the flows belonging to (2). From (1) . . . (6), it follows
that the perturbations of this class must satisfy the dimensionless(!) system:

0U__om oU

- T T T
ou
TR (U-
ot '(U u)

and the boundary conditions:
(8) U+, )=u(+1,6)=0, t<[0,+ o]
In (7) the following two dimensionless numbers apprears:
R,=rd*/v and R,=sd?/v

1 The undimensionalization used is x=x*d, t=d21* /v, U=WyU* u=Wyu*, the stars have
been omitted. Here W, is some reference velocity.
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We underline that R, /R, is the mass concentration f of the dust. Now chosen
the Liapunov’s functional

1
(9) Euy=%1faﬂ+u%dy
—1

as a measure of the perturbations (6), from (7) and (8), multiplying (7); and (7>
respectively by U and u, adding and integrating in [—1, 1] we find:

2
(10) "E=f{—(ﬂ]) —R1U2+(R,+R2)Uu—Rluz}dy
dt oy

1
If we introduce the functionals

1 1

(11) Xi=[uvray; Xi=[uwdy
2=

from (10) and (11), by classical integral inequalities, it follows:

dE

12 e il

2 dt

with

(13) ®=(y2+R)X:—(R,+R;) X, X, + R, X

in which y2 is the Poincare’s constant for the layer. Therefore the condition
(14) (R,—R,)’<4Y*R,

which make the quadratic form (13) positive definite, ensures, owing to the theorem
[31], the exponential asymptotic stability in the class (2), to the perturbations (6).

Now we will show that it can be possible to improve the stability condition
(14) by choosing appropriately the perturbation measure. In fact, we shall consider
now the family of equivalent energy measures

1
1
(15) EU}:E:[Uqukquﬂdy
24
with, till now, ¢; and c; arbitrary positive constants.

Reintroducing the functionals (11), multiplying (7);—(7)2 by ¢; U and c> u,
working as usual, we obtain:

dE
16 ¥
(16) m
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with
(17) ¥=e¢, (v Rl.)Xfi(Cl Ri+e; R) X, X, 4 ¢, RzX%

From (15) and (16) we have:

The flows of class (2) are asympt. exp. stable to the perturbations (6) if the
condition (18) holds.

(18) (01R1*€2R2)2<46102Y2R3

If we choose now ¢; and ¢, such that c1/c2=R3/R,, from (18) it follows
that the flows of the class (2) are absolutel Y unconditionally asympt. exp. stable to
the perturbations (6) in the best energy measure

1
(19) E(1) - ; f(R2 U2+ Ry12) dy
—1

We note that the same result we can easily obtain to more general perturba-
tions

{U:(», 1) e u(p, te; =, i=1,2, 3}
because we have, for this case the perturbed equations:

oU,  am o,

= —— _l_

o0t ox 0)?

U 0T  0*U
?__jr__gin_f}_a 5—R1(U3—M3)
ot 0z 0)?

~Ry U, —u)

ou

= A Ry (U, —w)
ot

s R —1)
ot

U,(y, ) =u,(y, 1)=0

that easily can be compared with (7).

3. Non linear stability of dusty gas flows in a plane layer to
tridimensional perturbations

We shall now extend the preceding results to the case of tridimensional per-
turbations. Let’s consider the general class of perturbations (of course suitable
periodic in the directions in which the flow goes to infinity):

{Ui(xa Yz, t)e; u;(x, y, z, t)ei;n'}
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to laminar flows of class (2). From (1). .. (4), it results that the perturbations of
this class satisfy the following dimensionless system(2):

(:)—lj= ~R(U+V).VU-RU.VYV-Vr+AU-R;(U—-u)
(22) %—:—R(u+v)-Vu—Ru-VV+R2(U—!l)
| V.U=V.u=0

where we underline that V, o, p belongs to the class (2), and with the boundary
conditions

(23) U, £1,z,)=u(x, +1,z¢)=0.

In the equations (22) the Reynolds number R=dWj/y has been introduced.
Let us consider the family of energy measures

(24) E@)= % f (¢, U2 +c,u?)dS

where S is the “’periodic cell”. Multiplying (22);—(22), respectively by ¢ U, cu,
adding and integrating in S, then we find:

(25) %;f{—cl(vU)2—¢:,R1U2—c2Rz|12+(cl R, +c¢, R)) Uu}dS
1

Therefore. introducing the functionals like formally (11), for cur tridimensional
perturbations, we obtain again the relations:

dE
._g -
dt .

with
x=(, Y2+, R) X?—(c; R+ ¢, R) X, X, + ¢, R, X2

that is, formally, the same relations (16)—(17); therefore also in this case we have
exp. asympt. stability under the condition (18) and absolute uncond. exp.
asympt. stability to the best measure (24) with c¢;/c;=R;/R;.

4. Non linear stability of MHD dusty gas flows in a plane layer
to onedimensional perturbations

We shall suppose now that the dusty gas flows in presence of a constant Hj
external magnetic field. In order to formulate the problem in a simple manner we
assume that only the fluid — not the dust — is electroconducting. These flows must
satisfy the following equations:

2 The undimensionalization is the same of note (1).

5
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( oV
: (Ww-vv): —Vp+uAV—KN(V—2)+p,rot Hx H

o0H

m(-avAJrv-Vv) =K(V—-17)
ot

V-V=V2=V.H=0

Let’s consider a solution of the system in the plane layer with rigid, fixed and
conducting boundaries, belonging to the class

27 V=V -0i; v=y(, Oi; H=h(y, )i+ H,j}
Replacing (27) in (26) it follows:

1 2y 7
=— @—-Fvg-——r(l/-—'v)—l-&h’o%
P

0x 0 y? P oy

oV
ot
oh oV 02 h
(28) = Hy——dn,

ot oy 0)?

ov
— =85V —v
L Ot ( )

with the boundary conditions

(29) V(td, t)=v(+d, 1)=0; h(d t)=h, h(—d,t)=h,

where l;l and 1;2 are given values depending on the electrical properties of the walls.
We note that to this class belongs (for suitables boundary electrical conditions)
the steady dusty gas flow (of Hartmann type):

( V=ov =%[0hM—ch(My/d)]/shM
.~ vKd?
(30) 1 h= [sh(My/d— y/dsh M]/sh M

M K,

1 S
_K=—V—_; 7\=VP-eV/(PVJe)

=

Let’s consider perturbations of the laminar class

(31) U, 05 u@, i h(y, 1)i; w}
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These ones, from (26), (28) and (29), must verify the dimensionless3 system:

( aU - 2 2
—_—= = Vn-f——ﬂ—l——ﬁ-i-c i —RT' (U —-u)
ot R 0y 0)?
oh _n,oU 02
(32) f Mg
ot 0y 0)?
ou
—=R"(U—-u
L ot ( )
where is
aw, om_rd> o e = ——
Rn=""0 err—, R2=£—, c:l, M=H,dVu,/(evn,)
Ne Ne Ne Ne
Boundary conditions are:
(33) U+, )=u(xl,t)=h(+1,1)=0
Having introduced the family of measures
1
(34) E(r)=%f{cl U2+ ¢, h*+ cyut}dy
-1

we multiply (32); by ¢, U, (32), by ¢, and (32), by c,u. Adding and integranting
in [—1, 1], we find:

1

E 2
(35) %=f[—ccl(%[—]) — ¢ RP U2+ (¢; R+ ¢; RY) Uu—c; Ry u? +

E Y
M2 __oh -
+6 — UF—-+c2R"’hai]—c2(%) }dy
R dy oy oy

Therefore, having introduced the functionals
1 1 1

(36) X12=fU2dy; X§=fh2dy; X§=fu2dy
-1 —1 -1
and working as usual, it follows
dE
37 —
(37) 7 7
with
(38) F=c(cY?+ RN Xi+ v Xa+ Cy Ry Xi—

m M>

3 The undimensionalization used is: x=d x*, t=d2t*,[n,, U=WoU*, u=Wou*, h=Hyh*;
and the stars have been omitted.

st
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Holding theorem [31], we have that all the flows of (27) are asympt. exp.
stable under the condition

1 m M2 o nt
(39) ¢ (e, Ry —c; Ry + (cz Rm—¢, —}E) <4 0¥2Rj ¢, ¢, c,.

Therefore from this condition it’s clear that, if we choose the positive constants
¢; in such a way that

Cz/cl - Mz/(RRm); 03/C1 =f
from (39) we have:

The flovs of the class (27) are abs unc. asympt. exp. stable to non linear pertur-
bations (31) in the best measure

(40) E(t)zé— f{ R UZ+%2/12 +Rmfu2}dy.

-1

Also here we note that the same result we can easily obtain to more general
perturbations

{Ui(y! t) ei; hi (y’ t) ei; U; (ys I)ei; TC}.
5. Non linear stability of MHD dusty gas flows in a bouuded domain to
tridimensional perturbations.
We shall study, now, the stability of an electroconducting dusty gas flow

into an arbitrary (bounded) domain ¢ with rigid, fixed and conducting boundaries
2, to the general tridimensional perturbations of the class

(41) U, 3,2, ey Bi(x, ¥, 2, O e w(x; ps 2 O e )

In this case we have that these perturbations to a general flow [V, H, v, p]
obeying to (27), such as for instance (30), must satisfy the dimensionless system:

_ﬁ"aU — —Va—[(V+U)-VU+U.-VV]4+ 6 AU—R" (U—u)+
t
M?2
+—R—[rot(H><h)><h+roth><H]
oh
(42) —a—=R"’{rot [(V+U)xh]+rot (UxH)}+Ah
t
ou = i m
a—= —(v+u)-Vu—u-Vo+ Ry (U—u)
t
V.U=V-u=V-h=0

with the boundary conditions

(43) U(x,» 2z t)=h(x,y,z t)=u(x,y,zt)=0, (x, 5,2, )EXT x [0, + oo
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Choosen the family of measures

1
(44) E(t)=?f [e,U2(x, ¥, 2 t)+c, k2 (x, y, 2, )+ c 0 (%, ), 2, t)]dC

c

and working as usual, we find:

d m
(45) —dE—“—f{—clU-D-U—csu-D’-uﬁclc(VU)z—clR’f' U2—cy; Ry v+
t

c

& M2 ¢, M?

rotHxh-U+ rothxh-U+

+(c,Rl" 4+ ¢;R2) Uu—¢, (Vh)2 +

o 2
‘%(csz—c-‘Ri)roth-U><H+czR'"h-D-h+c2Rmh-VU-h}dC

in which D and D’ are the deformation tensors for the fluid and for the dust. From
(45), if we put

(46) c,/e, = M?[(RR™)
it follows
(47) fdf— < -G
dt
with

o M? 2 M?
(48) G=C1(GY%+R1 *m—Qz—R')Xlz"'[cz(Y-l'_ml Rm)_%]X%_;r

+ey (RS —m) X35 —(c; RT + ¢, RY) X, X,
and
Q= sup |rotH|, m=— inf D;, m'= — inf b m,= sup D,

¢x [0, oof cx [0, oof ¢ x [0, oof ¢ x [0, oof

X} [Ude, X3= [Wde, Xi=[uwdc.

From (47)—(48), thanks to the theorem given in [31], the condition assures

M2\ _m "
(49) (c; R —c; RB)? < 4¢ cj[(c-ﬁ—m _Qz—R) (Ry —m")—m? RI]

assures the asympt. exp. stability for any flow belonging to the subclass of the
general class

1 I : ) 1 MZ l_Rm 1
(50) [m<§{2 with oc=mm{_(m+Q - ’:: 1 ); (m'+-fQ)R"'}
a<<yl G 2R Ry -—m! 2

of [V, H, v, p] obeying to (27).
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It’s easy ,at this time, to conclude that:
the choice

(51) esley=f

togheter with (46), gives us the (partial) uncond. asumpt. exp. stability in the
above subclass, to the measure

I Ve |
(52) E(t):—z-f[R'" g h2+R’"fu2Jdc.

Ist REMARK. — We underline that:

In the MHD isotropic case of a clean (incompressible) gas, any flow belonging to the
subclass

(53) B<y} with §=min []%- (m +%£;f); (ml+%) R,,,}

is abs. uncond. asympt. exp. stable to the measure

1 M?
54 E(t)=— R"U? + — h?ldc
o 0=5 /| x "

2nd REMARK. — From (30), (49), (50), we have that:

In the plane layer. S. Hartmann’s flows of the class

(55) 8<Y12, with S:L sup [ﬁl-min {M?/(c R); R"
' 2 1-L10|dy

are abs. unc. asympt. exp. stable to the tridimensional (suitable periodic) perturba-
tions (41) in the measure (52).

3rd REMARK. — It is interesting to note that the families of measures (40) and
(22) to onedimensional and tridimensional perturbations respectively, are exactly
the same (formally, of course). This choice has produced, in our opinion, the costs
(50) and, in particular (53)—(55), that we must have payed. It is for this that we have
not called the measures (52)—(54) the best ones, as the measures (19)—(24) and (40).
Perhaps measures better than (52)—(54) can exist to total abs. unc. stability, but
til now we don’t know; so this is an open problem.

REFERENCES

[1] Serrin J. On the stability of viscous fluid motions, ARMA, 3, 1959.
[2] Joseph D.D. On the stability of the Boussinesq Equations, ARMA, 20, 1965.

[3] Joseph D. D. Nonlinear Stability of the Boussinesq Equations by the Method of Energy, ARMA
22, 1966.

[4] Rionero S. Sulla stabilita asintotica in media in magnetoidrodinamica, Ann. Mat.. 4), 76,
1967.

[5] Rionero S. Sulla stabilita asintotica in media in magnetoidrodinamica non isoterma, Ricerche
di Mat., Napoli, /6. 1967.




On the best measure for the best stability in fluidynamics 71

[6] Rionero S. Sulla stabilita asintotica in media nella dinamica dei miscugli fluidi, Boll. UMI,
4, 4, 1971.

[7] Galdi G. P. Casi di non validita di una reformulazione del metodo della energia, ARMA, (1),
59, 1975.

[8] Maiellaro M. Sulla stabilita non lineare in media dei moti alla Couette-Benard di una miscela
fluida binaria, Atti Modena, 22, 1973.

[9] Maiellaro M. Su due casi particolari di stabilita asintotica esponenziale in media in magneto-
fluidodinamica, Atti Modena, 20, 1971.

[10] Slobodkin A. On the stability of the equilibrium of conservative systems with an infinite number
of degrees of freedom, PMM, 16, 1962.

[11] Knops R.J., Wilkes E. W. On Movschan’s theorem for stability of Continuous Systems, Int.
J. Engng. Sci., 4, 1966.

[12] Shir C.C., Joseph D.D. Convective Instability in a Temperature and Concentration Field,
ARMA, 30, 1968.

[13] Rionero S. Metodi variazionali per la stabilita asintotica in media in MHD, Ann. Mat. (4)
78, 1968.

[14] Rionero S. Merodi variazionali per la stabilita asintotica in media in MHD non isotermar
Rend. Napoli, (4), 35, 1968.

[15] Galdi G. P. Variational methods for stability of unsteady fluid motions in exterior domains,
Ricerche di Mat., Napoli, (2), 27, 1978.

16] Maiellaro M. Sulla stabilita non lineare in media di una miscela convettiva termodiffusa binariar
Rend. Napoli, (4), 43, 1976.

[17] Saffman P. G. On the stability of laminar flow of a dusty gas, J. Fl. Mech., 13, 1962.

(18] Kazakevich-Krapivin A. Investigations of Aerodynamical Resistance in a Pipe when the Flow
of Gas is Dustladen, Izv. Vissh. Uchebn. Zavedenii, ENERGETIKA, (1), 101, 1938.

[19] Sproull W. T. Viscosity of Dusty Gases, Nature, 190, 1961.
[20] Michael D. H. The stability of plane Poiseuille flow of a dustry gas, J. Fl. Mech., 18, 1964

[21] Michael D. H. Kelvin-Helmholz instability of a dustry gas, Proc. Camb. Phil. Soc. Math.Ph. Sc.,
61, 1965.

[22] Michael D., Miller D. A. Plane parallel flow of a dusty gas, Mathematika, 13, 1966.
[23] Liu J. T. Flow induced by an oscillating infinite plate in a dusty gas, Phys.Fluids, 9, 1966.

[24] Michael D., Morey P. W. The laminar flow of a dusty gas between two rotating cylinders,
Quart. J. Mech. Appl. Math., 21, 1968.

[25] Michael DI The steady motion of a sphere in a dusty gas, J. Fl. Mech., (1), 31, 1968.

[26] Healy J., Yang H. The Stokes problems for a suspension of particles, Astronautika Acta,
17, 1972.

[27] Dandapat B., Gupta A. S. On the nonlinear stability of flow of a dusty gas, J. Math. A
Appl., (2), 55, 1976.

[28] Gupta R., Gupta S. Flow of a dustry gas through a channel with arbitrary time varying pres-
sure gradient, J. Appl Math. Ph., 27, 1976.

[29] Bhutani O., Chandran P. Weak wawes in dusty gas, Int.J. Engng. Sc . 15..1971.

[30] Radhakrish Mama Charya. Pulsatile flow of a dusty fluid through a constricted chanel, ]
Appl. Math. Phys., 29, 1978.

[31] Rionero S., Maiellaro M. Sull’unicita e stabilita universale in media nella dinamica dei fluidi,
Rend. Circ. Mat. Palermo, (2), 27, 1978.

M. Maiellaro E. M. Valentini
Mathematics Department
University campus

Via G. Fortunatd

BARI, Italy





