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VAN DER POL’S OSCILLATOR EXCITED BY NARROW-BAND
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1. Introduction

A number of authors have investigated the response characteristics of a har-
dening-type oscillator excited by a wide-band process either from analysis of the
associated Fokker-Planck equation or from the moments of the response [1—4].
The interesting feature is that the response amplitude is singlevalued. One usually
associates multivalued response phenomena with this type of equation. It is because
of the wide-band spectrum, or lack of correlation of the excitation that the system
is unable to extract energy from the input process (or lose energy) which is required
for the occurrence of jumps. Lyon, et al. [3], demonstrated analytically and expe-
rimentally that jumps can occur when the oscillator is subjected to narrow-band
noise. The analytical work is based on a linearization method for which a necessary
condition is that the size of the fluctuations must be restricted. Also the results
are based on finding roots of a polynomial by approximate methods and is more
qualitative than quantitative. Lennox [5] has demonstrated the existence of jumps
for the hardening-type oscillator and derived an expression for the probability of
jumps.

In this paper a quasi-static approach is applied [6]. It is essentially the oppo-
site approach to that of the stochastic of Markov method with its associated Fokker-
-Planck equation. Since the input spectrum is narrow, the fluctuations inherent
in the input amplitude occur at a more slower rate than the fluctuations in the res-
ponse amplitude and phase. That is, if 7., is the correlation time of the stationary
excitation £ (¢) given by

J | K: (1) |d=
Tkor=7@“ (1)

where

Ke(r)=E[E(®E(+] @)
and, for simplicity, it is assumed that
E[E@)]=0 (3)
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then the quasi-static method can be applied whenever the inequality

Teor >> Trel (4)

is satistified where T, is the greater of the relaxation time constants describing
the time it takes for either the amplitude or phase to change appreciably.

2. Analysis

The system is assumed to be described by the stochastic differential equation

V+@+Br)y+ow2y=E£(1) (5)

where (1) is the response of interest, a, B are parameters (a>0, B<0), wy is the
undamped natural frequency of the system and £(¢) is a Gaussian stationary narrow-
-band stochastic process whose properties are completely described by equations
(2) and (3).

The narrow-band perturbation can be expressed in the form

E()=h(t)sin[v e+ (1)

where the amplitude A(7) and the phase (z) are slowly varying functions in time
compared to the oscillatory term sin(v¢). The spectrum of £(z) will be appreciably
different from zero only in the narrow band near the center frequency v ))Ac.

A
!w*vlsz—m (6)

If Aw is the smallest such bandwidth then =, of the process £ (7) will be re-
latively large, i.e.,

1
T ~—
cor
Ao

Equation (5) is transformed to the corresponding equations of ’’standard form’
describing the amplitude a (1) and phase @ () of the response y (¢) by requiring that

y(t)=a(t)cos D, O=vitt+o@)
(7)
y(t)= —va(t)sin ®
with the result
N a (moz o Vz) i . »
a:———z— sin2® —aasin? @ —B a*cos? Psin? O —g, (1) (8a)
v
- w2 —v? o . :
=2 cossz—?31n2(I)~Ba2cos3(I)sm(I)—g2(t) (8b)
v
where
g, ()= b sin @ sin (v 7+ ¢) (9a)
v
220 ="1 cos ® sin (v 1+ §) (9b)
av
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are the fluctuation terms. These equations are exact and are now simplified byusing
the method based on the “averaging principle” of Bogoliubov and Mitropolsky
[7] for the oscillatory terms and by using the method described by Stratonovich
[6] for the fluctuational terms. The first approximation leads to the following equa-
tions:

a= —%a—%‘ﬁ--}lz%)cos(cp_np) (10a)
b — “’022"\"’2 " 'L;(;)v sin (¢ — ) (10b)

It should be noted that the small parameter, which is usually associated with this
type of approximation is not explicitly included in the analysis. Thus the appro-
ximation is valid only under certain conditions. We could require, for example
1/v<1. Physically, however, if the bandwidth of the excitation is small then the
response will be close to sinusoidal and both the amplitude and phase will be slowly
varying functions of time.

The relaxation time of the amplitude a(¢) is of the order 1/a while the rela-
xation time of the phase ¢ (¢) can be estimated as

(11)

Trcl¢:<

Thus, in the present case, the conditions for applying the quasi-static method take
the form

2av
h(1)

If these conditions are satisfied, then the amplitude a(z) and the phase¢ (f) manage
to take ’quasi-static” values so that both @ and ¢ can be assumed to be zero. Thus,

h(1)sin (¢ — ) = a (vV* — ©y?)

1
Teor >> ? Teor >> < = (12)

(13)
Bva?

h(t)cos(p—Y)= —aav—- .

Equations (13) determine the amplitude and phase az zeromemory functions of the
excitation, i.e., as functions of /4 (¢) and ¢ (¢) at the same instant of time. Statistical
characteristics of both the amplitude and phase can be found by using methods of
nonlinear transformations. To obtain more exact results, higher-order approxima-
tions can be used.

On squaring both sides and adding them, an inputoutput relationship is ob-
tained:

O [( o (a+-ﬁ—a2)2] (14)

In Fig. 1, A% is plotted as a function of a? fo specific parameters.
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3. Stability response

As in the deterministic case certain values of a will be unstable. Equations
(13).-and (14) represent the necessary but not sufficient conditions for the existence
of stable values of a and ¢. Sufficient conditions are obtained by letting 8§ @ and 8o
be small deviations of a and ¢ from their stable values so that the following linearized
variational equations for 8 @ and 8¢ are obtained:

Sa=a, da+a,d¢

So=a, da+a,do (15)
where
11 %i_:&_@az
2 8

ay, = — =y
2av
« [ .
Ay, = ———-—a 16
2 % (16)

It is obvious that the necessary and sufficient conditions for asymptotic stability

B

a|1+(122= | Pl —Z<0

2

Jpezs @ ol v2 — @,2)?
a”azz—a,zazzl:——-B — +7@z4.ﬁ | _(__ 0_)_

= >0 (17)
64 4 4 442

where z=a?. Note that the first condition is always fulfilled for z> —2a/3. The
second condition can be expressed as

1 df
v Z
If equation (14) is rewritten in the form
2
f(z):z[(vz~m02)2+v3(oc+—§~z)] (19)

where f(z)=h?(t) is always nonnegative.

The function f{(z), as plotted in Fig. 1 has a maximum point at z=z, and
minimum point at z=z, where

8a 4du 3 -
2= _‘3"%( :t3_f5 \/1 - (v — @,°) (20)

o2 v?
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for a?v? —3 (V2 — w,2)2>0. It is found that the range of possible stable values of
z=a® to be determined by the positive derivative of f(z) and condition z> —2a/,
lie in the region

Z;<<z<< O (21)
This corresponds to the region
h2<h?*(t)< o (22)

where /; can easily be determined by equation (19) at z=z;. Note that the occu-
rrence of the multivalued responses of the system is not possible in this case.

4. Probability of stability region

Consider the case where £(¢) is a narrow-band Gaussian process with zero
mean and variance

62 = < FE(l)>= <%h2(t)> (23)

given that the initial phase is completely random, that is, uniformly distributed in
(0,27)

1
o (9) = — 0<p<2rw (24)
27

Then the amplitude A(t) the process &(¢) will be Rayleigh distributed

2
w,,(h)dh=i5exp(— i )dhz —d[exp(——

2
%o 2 0,

L )] 0<h< o (25)

2
2,

with mean value

h
<h>= [hw,, (M dh= s, \/—g— (26)
0
mean square value
<h?’> =20, (27)
and variance
2 TE 2
or=(2-T) e (28)

Referring to Fig. 1, it is found that the stability region /; <h(t)<oc occurs with
probability

(e o]

P=— f d[exp (— 2‘2;2)] =exp (— 2}:02) (29)

h]_

Thus, for a given system (a, 3, wg) and given narrow-band excitation (v, 5,%), the
probability of stability region will occur as it is given by equations (29), (22) and (19).
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In the region z>>z, the relation between f(z) and z is the single-valued and
usual method of probability transformation to be employed. Thus the density
function for the response amplitude a is obtained

2 R[22
w (@)= vyt
642 16
a? R 2
1 €Xp { = 5 605 [(\r iy )e - (oc + 4E az) ]} (30)

which holds for a>a,. Also, since the occurrence of response amplitudes on the
branch BQC has been verified to be unstable, it is assumed that

wo(@=0,  a<a, 31)

'5;1" I T 1 I o } —
| Q=10 | } | 4

» =20 { '
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" = | | | 7;// i
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Fig 1 Equation (#)(z:d’)

5. Conclusions

Van der Pol oscillator is excitet by a stationary narrow-band noise. The ana-
lysis is based on the concept of quasi-tatic amplitude and phase values which is
exactly opposite to the stochastic of Markov approach, in effect, replaces a system
with memory with one wihout memory. It is demonstrated that the occurrence
of jumps is not possible in this system and an expression for probability of sta-
bility region occurrence of the response amplitude is derived.
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VAN DER FOLSCHE OSZILLATOR DURCH BANDRAUSCHEN

Van der polsche Oszillator ist durch den stationdren Engbandrausch angeregt.
Die Analyse beruht am Konzept des quasistatischen Amplituden und Phasenwertes,
welcher der stochastischen oder Markschen mit Fokker-Plankschen Gleichung
verbundenen Approximation vollkommen entgegengesetzt ist. Diese Appromxiation
ersetzt eigentlich das System mit Speicher durch das System ohne Speicher. Es
wurde gezeigt, dass in diesem System kein Sprung méglich ist, und die Formel zur
Erscheinungswarscheinlichkeit eines stabilen Geibiets der Antwortamplituden
wurde ausgeleitet.

USKOPOJASNO POBUDEN VAN DER POL-ov OSCILATOR

Van der Pol-ov oscilator pobuden je stacionarnim uskopojasnim Sumom.
Analiza je bazirana na konceptu kvazistatitke vrednosti amplitude i faze koja je
potpuno suprotna stohasti¢koj ili Markovoj aproksimaciji povezanoj sa Fokker-
-Planckovom jednaéinom. Ovom aproksimacijom ustvari sistem sa memorijom
zamenjuje se sistemom bez memorije. Pokazano je da u ovom sistemu nije moguca
pojava skoka i izvedena je formula za verovatno¢u slucaja stabilne oblasti amplitude
odgovara.
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