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SHEAR FLOW IN COMPOSITE BEAM STRUCTURES
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In the scope of the engineering beam theory we shall determine the shear flow
expression assuming that the external load lies in the plane of symmetry of the
composite beam (see Appendix) which has the uniform bending stiffness. The follo-
wing permanent influences are introduced : dead load (G), prestressing by forces (P),
shrinkage (S) and movement of supports (C). The shear flow expression will be
developed under supposition that along the beam the cross section resultants de-
pend linearly on the concrete relaxation function [1], [2].

First we shall consider a statically determinate structure and a primary system
(X, =0, X,=redundant force) of a statically indeterminate structure. The axial
force and the bending moment are as follows:

Nyo=Nig1*+ N2y R¥,

1
MH‘D=M1H1*+M2HR*: H=G>P,S3C5 ()

Nien and Miz (k=1, 2) being functions on z only (z=coordinate along the beam
axis). The normal stress 6,z ¢ in an arbitrary point of the part j of a composite cross
section, due to the introduced influences, is given in Ref. [2]. This expression in-
cludes all assumptions concerning the rheological properties of materials given in
the Appendix. It will be written in the form which is more convenient for evaluating
the shear flow expression:

3 2 2
GiH® =V Z Z [ > Qg E, enp+ dighn ] Azn, (2)
a=1h=1| k=1
= p,n,m; H=G, P, §, C; A}, being functions as follows:
A?[,:l*, A;;,:R*, A;h:BE ’ h= ls 2: (3)
and:
Shicer = Nike + Y Pnkcers (4)
y=coordinate along the axis of symmetry of the cross section;
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% M (5)
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h=1, 2. All other coefficients ajur and d,_,,, are equal to zero. The term crf:pq, in
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0 0
0 Npq) MP(D
i  —= 1 8
in which:
A A
Now= —P4 0" N “AprYop M,
oi o0i

; 9)
ng; :yp Ng(b + ‘;E MgP:

oi

Ngp and Mop being the cross section resultants at time r=#;,_ due to prestressing
by forces (influence H—P) affecting the beam at t=1,_ too [4], [3].

Applying Jourawsky’s hypothesis we determine the shear flow ¢, representing
the total longitudinal force transmitted across the plane determined by y=const.
per unit lenght along the beam. We establish the equilibrium of a segment of the
beam which is obtained by isolating the part of the beam element dz below y—
=const., so that:

d6;
Q= du(z v, 1)~ [ "2 aa, (10)
d 4 Z
Aj
H=G, P, S, C;where ;i\;zarea of the part j belonging to the part of the cross section
separated by y=const. We use also the known relations:

N d
hgo= _a_@:nlﬂl*+’72HR*1 nkH:' ___]'\'r@,
oz 5
oM dM (1)

0z dz

k=1,2; H=G, P, S, C; ng p=distributed forces having the z axis direction; 7T ¢ —
=shear force, and:

dN® IMpao
e DL, (12)
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When we perform the operations indicated in Eq. (10) we arrive at the shear
flow expression:

1 2T 3
qu o= Z Z Z [ Zl A anic (Bjy Nicyg + € Tig) + f}ahﬂ] Az, (13)

Jj a=1h=1)k=

j=c, p, n, m; H=G, P, S, C. The coefficients bj and ¢;, are as follows:

~ -
jr
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bjh:b\h—h_j__—}-(— 1)3_} YlZij ’
‘ : (14)

| e Ay o
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i.c. when Aj, is substituted for Nj; and Sjr for Myxu we obtain by from Eynnkn
and c¢jn from Eyxnxa, Eq. (5);

:WAn S,=v;S;, (15)

ir J

F=, B, 0, S;=first moment of A;. Coefficients fjan i are as follows:

| 1
f;’th: _—_5_(1_Pp)g}?’ prhI’: _?Ppgp, =1, 2,
(16)
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i
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i

all other coefficients fjun i are equal to zero.

In a statically determinate structure or primary system (X;z=0) the cross
section resultants vary according to the law given by Eq. (1) in the following way:

for dead load (H=0G):
NIG#O’ NZGZOa

(17)
M10#05 M:G:O;

for prestressing by forces (H=P) if prestressing steel is affected by force Pat r=1,_
and immediately after that, at =z, it becomes a part of a composite cross section:

0 7
NI.P;(l—Pp)NP‘l” NZP—'PPAI(:(I)

. N (18)
MIP:(lﬁpp)MP(I)a sz:PpMPcD;
Ngq, and Mg(p are determined by Eq. (9):
for shrinkage (H—S), under assumption given by Eq. (A.4):
N1S= _NZS:EurAcrv (19)

Ms= —Mys=E, 1S,;

cr?
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for movement of supports (H=C):
Nic=Nyc=0,

(20)
M,¢c= My~ 0.

Now we shall consider a statically indeterminate structure with »n redundant
forces. The cross section resultants vary according to the introduced law, Eq. (1),
when the redundant forces depend linearly on the concrete relaxation function:

X;.H'-JX;\JH"TAXAH(I**R*), 21

A=1,2,...,n; H=G, P, 8, C: where X\ y— Xou(tg, tg) and A X, yare time in-
dependent quantities. This assumption is usual in the engineering practice [5]. The
cross section resultants are represented as follows:

NH:NHGH ‘Zl N, X;.H,

" (22)
MHW' MH([)'E ‘Zl M,\ XAH,

A=

H=G, P, S, C; N, and M, being the cross section resultants in the primary system
due to X,p,=1* 2 =1,2,...,n); Nyo and My are given by Eq. (1).
On the basis of Eq. (22) the normal stress expressions are as follows:

Gin — OjHO + Ojgxs [23)

j=c¢,p,n,m; H=G,P,S, C; where gino i1s given by Eq. (2). The terms GjHX,
representing the part of the normal stress in a primary system due to X, 5, are de-
veloped in Ref. [2]. Here it will be given in another form:
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—~ 0 *
Cinx = Y; )Z 2. LZI e £, Epn Xppr - di o Xoomt ] Aan, (24)

\=1g=1 h=1

Jj=¢,p,n,m; H=G,P, S, C. We obtain the coefficients g, when the subscript
A is formally substituted for subscripts kH in Egs. (4) and (5);

1 Tor k=1,
-

0 for k=12,

k=1,2; »=1,2,...,n; H=G, P, S, C. The coefficients d,,
1 1
dplhl - _2_ (1 o pp) 631" dp.‘! m '5" Pp Gg:‘d (2 6)

M= B i f — 1Y A X, (25)

» are as follows:

h=1,2; A=1,2, ..., n The quantities cg;\ are obtained when N, and M, are

substituted for Nf:’@ and Mﬁm, respectively, in Eq. (8). All other coefficients d; i
are equal to zero.

Similarly, the shear flow is represented in the form:

9q=4quo + 4yy, (27)
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H=G, P, S, C; where gquq is given by Eq. (13). Applying Egs. (10) and (21)—(24)
we arrive at:

n 3 2 2
- A 0 .
9rx z;\zl Z Zl h2! [’Zl Aialk (bjh 1 Cjy T;) Xkn '|‘f:iam X}‘H:I Agn, (28
=1 j a= = k=
F=aipi i, H=6G,P, S, C. Here:
IN dM.
i T\=——, (29)
dz dz
A=1,2,...,n; and the coefficients f;,;,, are as follows:
1 , 1
-/;J'lh?\ =T (l i Pp) £ .prrl A M i Ppg?ﬂ (30/
2 ¢
h=1,2; »=1,2,...,n; g, we obtain when n, and T, are substituted for npo and

T respectively, from gp, Eq. (16). All other coefficients f;, are equal to zero.

The shear flow ¢, Egs. (27), (13) and (28) as well as the normal stress o;u
Egs. (23), (2) and (24) are linear combinations of the concrete relaxation function
R* and the basic functions B; (h=1,2). By experiment we obtain the concrete
creep functions F*. In Ref. [1] it is shown that functions R* and B; (h=1,2) can
be determined directly from F*: we create Volterra's integral equation of the second
kind in which the kernel is expressed through the concrete creep function and in
which the parameter vy, appears. For v;,—=0 the solution gives the concrete relaxa-
tion function; for two different values of vz, v; and y,, being the individual values
of the matrix of the cross section geometry, the solution provides the basic functions
B,* and B,*, respectively. It is obvious that the shear flow expresssion, developed
here, can be applied to any given concrete creep function F*.

For the concrete creep function F* of any given form the values of the functions
B;, (h=1,2) and R* can be, once for ever, calculated for a series of values 7o, 11y
and v» (0<vn<1) so that the corresponding values of ¢;; and gu can be easily
obtained [6].

We developed the shear flow expressions (13) and (28) under supposition that
the beam has an uniform bending stiffness. Now we shall show how we apply these
expressions when the bending stiffness vary along the beam axis. As it is usual in
the engineering practice we adopte that such a beam has constant cross sections in
a finite number of intervals. Keeping in mind that the basic functions B, (h=1,2)
depend on the coordinate z through the coefficients v, (A=1, 2) and that the coef-
ficients in Egs. (13) and (28) depend on z through the cross section geometry, too,
we conclude that for each of the intervals Egs. (13) and (28) are valid and that for
two different intervals the above mentioned quantities change their values because
the cross section geometry is changed.

Finally, it is necessary to emphasize that the shear flow expression for stati-
cally determinate structures as well as for primary systems (X,;,=0) is accurate
in the framework of the introduced mathematical description of rheological pro-
perties of the materials coacting in the composite cross section. For statically in-
determinate structures the expression is accurate in the above mentioned framework
adding the assumption concerning the redundant forces time-dependance given by
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Eq. (21). In this case for any given pair (¢, 1y) the redundant forces are the solutions
of the system of n algebraic equations, while the exact redundant forces are the
solutions of the system of » inhomogeneous integral equations [3].

Appendix

Here are some necessary information for better understanding of the eva-
luation of the shear flow expression. For more detailed explanations the, quoted
references should be used.

I. In a composite cross section coact: concrete (¢) as an aging linear visco-
elastic material, prestressing steel (p) whose relaxation property is taken into ac-
count, steel parts (n) and reinforcing steel (m) being elastic materials. Using the
earlier results [7] it is adopted that the nondimensional prestressing steel relaxation
function in the interval (7, r) depends linearly on the nondimensional concrete
relaxation function.

The uniaxial stress-strain relation for the j material due to the influence H
may be written in the unique form using linear integral operators:

: - ™ o™ i P *
Gjg =Y [Qj (Euey—dys 9, E, €cs) 1 8HP S_ip (A =iy 5?:) Qp]s (A.1)
pr
g _ |1 for g=s g=H,j;, s=8, ¢, p;
&=

| o for g£s" j=c¢,p,n,m; H-G,P,S,C.

Qj’=re1axation operator of the j”* material:

éj' ;(1 o P;) I’ ; Pj ,té"’, OQPJS 11 ]_ Cspa n? m’ (AZ)
Cc l’ O<Pp£‘: 15 Pn= Pm — 05 (A3)

-~

1" = unity operator; Q;* Q;’ 1*=0Q* (1, ty) =nondimensional relaxation function
of the j” material; 1*=1* (¢, ty)—=Heaviside function: R'=concrete relaxation
operator; R*=R*(t, t))—nondimensional concrete relaxation function; 7—time:
to=time of loading. v;=E;/Ey; E.=E.(ty); Ex=compaired elastic modulus.

In the engineering practice the usual assumption is that in the observed in-
terval (7o, t) the shrinkage strain =g depends linearly on the concrete creep function
F¥:

e s=r(F*—1%), (A.4)
r = const. for any pair (¢, ty):
=8 (A.5)
F*(, t,)—1
es—=measured value for a given pair (1, ty).
In Eq. (A.1) P=prestressing force; Ay, —vyAy; Ap=area of the prestressing

steel in the composite cross section; ¢ =strain in the arbitrary point of the cross
section at t=1, due to the prestressing force P.
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2. In Ref. [4] it is shown that a) the elements ys; (4, /=1, 2) of the symmetric
matrix |\yn||2,2 describe the reduced cross section geometry; b) the individual va-
lues of this matrix are vy, and v,, 0<y,<y;<I; ¢) two basic functions B,=B8,
(z, 1, to) (h=1,2) correspond to any given composite cross section. They depend
on the rheological properties of all materials coacting in the composite cross section
as well as on the cross section geometry; d) Volterra's integral equation of the se-
cond kind in which the parameter v, appears can be formed. For three different
values of this parameter y,=v1, y»="2 and y,=0 the solution of this equation gives
the corresponding basic functions Bj, Bj and the concrete relaxation function
R*. In Ref. [2] and [6] the known numerical procedure [8] is used for obtaining this
functions corresponding to CEB—FIP 1978 and ACI concrete creep functions.

3. The foliowing notations avre usecd:

(A.6)
3, =Yi—Yir OT2=7Yi— Y2 Arp=%; ~ Y
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FLUX DE CISAILLEMENT DANS LES STRUCTURES MIXTES

On étude les structures mixtes et précontraintes en prenant en compte la re-
laxation de I'acier de précontrainte.

On établit ’expression du flux de cisaillement a partir de I’expression connue
de la contrainte normale. On a démontrée quc le flux de cisaillement depend li-
néarment des functions de base et de la fonction de relaxation du béton. Ces fonc-
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tions sont obtenues de la résolution d’une seule équation intégrale de Volterra de la

deuxi€éme espéce contenant le paramétre dependant des caractéristiques géométri-
ques réduites de la section.

TOK SMICANJA KOD SPREGNUTIH LINIJSKIH NOSACA

Razmatra se spregnuti ili prethodno napregnut linijski nosa& pri ¢emu je uzeta
u obzir osobina relaksacije Celika za prethodno naprezanje.

Na osnovu poznatog izraza za normalni napon izveden je izraz za tok smicanja.
Pokazano je da tok smicanja predstavlja linearnu kombinaciju osnovnih funkcija
preseka i funkcije relaksacije betona. Ove funkcije se dobijaju iz reSenja samo jedne
Volteraove integralne jednacine druge vrste u kojoj se javlja parametar zavisan od
redukovanih geometrijskih karakteristika spregnutog preseka.
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