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VARIATIONAL PRINCIPLE AND ERROR ESTIMATE FOR
A NON-LINEAR HEAT CONDUCTION PROBLEM

T. M. Atanackovié, P. S. Pukié, A. M. Strauss
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Abstract: The variational principle for stationary heat conduction with
temperature-dependent heat generation in cylinders and spheres is constructed.
On the basis of this principle approximate solutions for several problems are
obtained. Also, error of such approximate solutions is estimated.

1. Introduction. Stationary heat conduction problems for cylinders and spheres lead
to a two-point boundary value problem for the second order differential equations.
These equations may be linear, or non-linear, depending on the properties of the
material and, possibly, presence of heat generation terms. In particular, if the thermal
properties of the material are constant, and if amount of heat generated inside the
body dependens on the temperature, one obtains a non-linear boundary value
problem. The typical form of the differential equation determining the stationary
temperature distribution inside the body (cylinder or sphere) reads

1 d (,dT

— — m—|+F(T)=0; 0<r<li, 1.X
pm dr( dr) ( (1.1)

where r is non-dimensional radial coordinate, T is non-dimensional temperature,
F(T) is the term representing the temperature dependent heat generation. For a
cylinder, m=1, and for a sphere, m=2. We take the boundary conditions for (1.1)

in the form
dT (0)

dr

=0; T()=T,, (1.2)

where T is a given constant.

A method to integrate the boundary value problem (1.1), (1.2) numerically
is presented in [1]. Recently, Wacker [5] found an exact solution of the boundary
value problem in the case when the non-linear heat generation is according to the
exponential law. Our intention is to study (1.1), (1.2) by the variational method
developed in [3]. Thus, we shall first construct an extremum variational principle
for the problem. Then, we will use this principle to obtain an approximate solution
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to (1.1), (1.2) by the Ritz method. Finally, we will estimate the error of such appro-
ximate solution. The error bound will be derived by a method slightly different
than those presented in [3], [4]. Also, an extension of the results of [3] is made for
the boundary value problem (1.1), (1.2). Namely, in this paper we shall show that
the functional of the extremum variational principle attains global maximum on the
solution of (1.1), (1.2). This property is of importance, especially for error estimating
procedure.

2. Variational principle for boundary value problems

The boundary value problem (1.1), (1.2) is not suitable for the variational
analysis that we intend to use. Therefore, we transform (1.1), (1.2) by introducing
a new dependent variable ¢ by the relation

t=r"+tl m=1.2. 2:1)
Then (1.1), (1.2) transforms to
2m
[(1+me "™ T) +F(T)=0, 0<t<1, (2.2)
[(1+m)e ™™ F],_,=0; T()=T,, (2.3)

._7d7
() = ().

On the physical grounds (7 is the non-dimensional temperature) we are in-
terested in the non-negative solutions (7=0) of (2.2), (2.3). To construct a varia-
tional principle for (2.2), (2.3), we set

£ (D)= f F(Z)dE. (2.4)
0
Then, it is easy to see that the following functional
.I=flL(T, T, 1) dt, (2.5)
with 0
L= (_”—zi"i t i (T)2—f(T), (2.6)

is stationary (i. e., 3/=0) on the solution of (2.2), (2.3). The functional (2.5) is called
the primal functional of the problem. To construct an extremum variational prin-
ciple we shall follow the method presented in [3]. Thus we define a generalized
momenta by the relation

oL .
p=a—]_"_—"(l +m)ztl+m T. (2-7)
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Solving (2.7) for T, the Hamiltonian of the problem can be written as
. 2
H=pT-L= i w TS (D). (2.8)
2(1+m)2titm

The canonical form of (2.2) now reads

; (R (2.9)

.
(1+m)2gt+m

p= —F (T). (2.10)

The functional 7 of the extremum variational principle formulated in [3]
becomes

1(0) = f{L(e 8, )+ _Z(p, p,t)lp bt“ﬂ}dt—bﬁ(l)e(l) (2.11)
— (bte )
where a=2m/(1-+m), b=(1-+m)? and
: z . 2 .
Fpp D=pF 1 (D) + 2% ~f(F'(~P)). (2.12)

Also in (2.11) we used F-! to denote inverse of F, that is the function for
which (see (2.10))

T=F-'(-p). (2.13)

Finally, the vertical bar after _# denotes that _/’ should be calculated for those
p and p that are designated.

In all above formulas 6= W is an admissible trial function. The set WfX
of admissible trial functions is defined as

W—{0:0CX, (bt26) =0 for t(0, 1)} (2.14)
where

X={T:TEC>(0, 1), (2.3) holds, T(0)=T,}. (2.15)

In [3] it is shown that on the solution T of (2.2), (2.3) the functional (2.11)
is stationary and has the value equal to zero, i.e.,

3I(T)=0, I(T)=0. (2.16)

In writing explicit form of (2.11) we shall distinquish two cases:

CASE A: Let us assume that

F(T)=pe, {2:17)
where B = 0 is a constant. The, (2.11) becomes

L (B):f{bt" 62 — B e + (bate-' 0+ bt 0) 1n|:g;_ (bate=! 6+

4 bt '6)]} dt—b 6 (1)0(1). (2.18)
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CASE B: In this case we choose
F(T)=T1", (2.19)

where n is a specified integer. The functional (2.11) becomes

Qn+1- n nt1

M bate1 0+ braB) | 7 b di— b€ 20
o e e ‘9“”9)] }dr bO(1)6(1). (2:20)

IZ(B)w.f{bt“BZ—

Let O be an arbitrary admissible trial function. Since functional (2.11) is (in
both our cases 4 and B) Fréchet differentiable, we have the following expansion

1
10)=I(T)+8I(T, CH; 82 1(¢Y, 0), (2.21)
where 827 is the second variation calculated on the function ¢ given by
Yp=T+ef, £=0-T, (2.22)
with 0<<z<<1. Observing (2.16), (2.12) becomes
210)=31(Y, ). (2.23)

Equation (2.23) is the basic relation that we will use to prove the global ex-
tremality of functionals (2.18) and (2.20). Namely, in [3] we proved (Theorem 2)
that if (0F/0T) does not change sign for 7& (0,1), the functionals (2.18) and (2.20)
have a local extremum on the exact solution of corresponding boundary value
problem. Here we shall do more by showing that both (2.18) and (2.20) have a
local extremum on the exact solutions of (2.2), (2.3), (2.17) and (2.2), (2.3), (2.19),
respectively. To do this we consider first:

CASE A: Calculating the second variation of (2.18) and using it in (2.23),
we get

l .
-2, (9)=f[@e‘*‘(c)2+zC[(brac')']+ 6D ]
0

. dt, 2.24
[-(br" ) ] (229

where we performed partial integration on the middle term and used boundary
conditions on [

[ +m) e ™8], =0, Z(D)=0. (2.25)
The boundary conditions (2.25) for the variation { follow from (2.3) and
the fact that 6 WCX. To simplify (2.24), we sct

Alzmin[ W — 0 inf ﬁJ—ﬁa] (2.26)
te@,ny —(bteT) @) —(bt20)

B1=min[ inf Be”, iInf Be”}. (2.27)
tEO,1) tEQO,1)
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We note that in (2.26), (2.27) T is the exact solution to the problem (2.2),
(2.3), (2.17) and 6= W is an admissable trial function. In our application 6 will
be an approximate solution to the boundary value problem in question and thus
the second terms in (2.26), (2.27) will be easy to determine. However, to calculate
the first term in (2.26), (2.27), we need information about (unknown) exact solu-
tion of the problem. Therefore for given 6 we have from (2.24).

1

S (B, (02 + A, [(br°%y P+ 28 [(b120) 1}dt= —21,(8). (2.28)

0

To simplify (2.28), we expand { in a generalized Fourier series

=S C,O, (2.29)

n=1

where C, are constants (Fourier coefficients) and @, are elements of the (complete
in L, norm) set of eigenfunctions of the following spectral problem

[(1+mpee " ®,)] +2,®,=0, 0<t<1 (2.30)

[(L+m)yt" " ®,],_,=0, @,(1)=0. (2.31)

The first eigenvalues of (2.30), (2.31) for m=1,2 are »;=5.7831 and Aj=mn2,
respectively.

Substituting (2.29) into (2.28), using the orthogonality property of ¢y and
(2.30) we get (see [3] for details)

S, 1¢13,= —2L(9), (2.32)
S, (0)=min (B, —2%,+4,3,?) and (2:33)

where

18|z, =( f Q2 dey
0

is the L, norm of L. Note that S; (by 4, and B;) depends on 0. Let W, C W be the
set defined by
w,={6.9cWw, §,(0)>0}. (2.34)

Then by considering the restriction of (2.32) to W, we conclude that /,(6)
has the global maximum (equal to zero) on W,. Inequalities (2.28) and (2.32) are
the basis for estimating the error of an approximate solution 6. We leave this ana-
lysis for the next section.

CASE B: Calculating the second variation of (2.20) and using it in (2.23),
we get

1—n

: 1 . n N .
_21,(0)- f [n (4 +;[—(bt“ ¢)-] -[(b:a c)-} +2¢ [(bt“ c)-]] dt. (2 35)
0
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Defining the constants A, and B by

1—n 1—n

AZ—-min{ inf -L[—(btaT)']-"—; inf i[w(bt“ifi)']_"ﬁ] (2.36)

te(0,l) n 1<(0,1) n
B,=min{ inf n T"71; inf n 61} (2.37)
1€(0,1) t€(0,1)

and using the same procedure as in case A, we get

S, |¢ = ~21,0) (2.38)
where
S,=min (B,— 27,4+ 4,7 (2.39)

and M, n=1, 2, ... are, again, the eigznvalues of (2.30), (2.31). Therefore, defining
the set WrC W as
w,={0:0cW, S,(0)>0} (2.40)

we conclude from (2.38) that /5(f) has a global maximum on W, for 0=T, where
T is the solution of (2.2), (2.3), (2.19).

3. Error estimate for boundary value problems

Results of the previous section may be used to derive a bound on the error
¥ of an approximate solution 6. We first note that (2.32) and (2.38) give the follo-

wing bounds
—271.(0N0 12
lwwhg[i4)] i=1,2 (3.1

I

on the L, norm of Z. Cases A and B correspond to i=1 and i=2 respectively. We
may need also an estimate of the L., norm of T, where

18]l = sup |T()]. (3.2)
re(0,1)
To get an estimate of || {|[,_, let
Y =|| (B2 Ly ||z (3.3)
We shall first derive a bound on Y. We consider separately cases 4 and B.

CASE ‘A: By substituting (3.3) into (2.28) and using the Couchy inequality
we get

AYZ—ZYHCHLZ + B\JCj;i24-211(e)§0. (3.4)
Solving the algebraic inequality (3.4) for ¥ and using the fact that ¥=0and

(3.1), we have
— 21 (ON!2
Yglk[_zél()} (3_5)
1
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where A is the eigenvalue which determines Sy, i. e.,
Slzmin(31“21n+Al)‘n2)z(Blfzkk + A MF). (3.6)

We note that k is not equal to infinity since the eigenvalues An of (2.30), (2.31)
form an increasing sequence whose only point of accumulation is at infinity.

The central problem now is to derive a bound to || ||, in terms of Y given
by (3.3). From (3.3), we have

1
2
Y2 | [(bt°0) ) dt = [C”’ic'] (m -+ 1) rmdr, (3.7)
Jerora- ]l

0

where we used (2.1) and definitions of a and b. From (3.7) it follows that

1 1 1
Y2=(1+m) [f rm(&''Ydr+2m j CPrm- 100 dr + fmz i 15 dr]. (3.8)
0 0 0

Using partial integration and the boundary conditions on U(r) we get

1 1
Y2=(m+1) U ()2 dr+m f(?;’)2 rm=ldr +m (C')f=1] . (3.9)
0 0
We simplify (3.9) by the following estimates
inf rm=0; inf et i m=1,2. (3.10)
re,n re(0,1)
With (3.10), (3.9) becomes
Y2=(m+ D))+ T[] (3.11)
Finally we use Cauchy inequality and the boundary condition 4(1)=0 to get
1l <11 NI, - (3.12)
Now, by using (3.12) and (3.11) in (3.5), we have
’ 12 —2 1. (B)\\12
(P 2] =1 (=220 -6, 0, (3.13)
S, (m+1)

Inequality (3.13) gives an estimate, of either ||{||, or [{'(1)| for an appro-

ximate solution of the boundary value problem (2.2), (2.3), (2.17), in terms of the
computable quantity G (9).

CASE B: Following the same procedure as in CASE A, we have
21,(0) ]”2

74

ngk[— (3.14)
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where S, is given by (2.39) and 2 is the eigenvalue that determines S», i. €.,

S,=min (B, —2 A, + A, \,2) = (B, — 2 A, + A, M2). (3.15)
Now, combining (3.11), (3.12) and (3.14), we get

30 R Rk ”2< —2L0) ”2= 0 3
[[C(l)]+|-C|Lw] Jk[sz(mm G, () (3.16)

as an estimate of the error of an approximate solution to (2.2), (2.3), (2.19).

4. Numerical results

We shall illustrate the previous results by considering a few concrete boundary
value problems.

4.1. Heat conduction in a cylinder with exponential heat generation. As a first
example we consider (2.2) with m=1 and the temperature dependent heat gene-
ration as (2.17). Also, we take T9p=0 in the boundary conditions (2.3). Appro-
ximate solution to (2.2), (2.3), with m=1, we take in the form

B—(l—t). 4.1

0=79(6—81+2t2)+—-
2 4

Constant C; is determined by substituting (4.1) into (2.18) and minimizing
with respect to C;. To estimate the error of this approximate solution we used
(3.13). The constants 4, and B; that are needed for determining S; are estimated
from (2.26), (2.27) that in the present case read:

wemal Lo, 1) -
Be 16C,+8

B, < min {#}. (4.3)

The first terms in parenthesis of (2.26) are estimated using a similar procedure
to those which is described in details in [6]. The second terms in parenthesis of
(2.26), (2.27) are calculated using 6 and the fact that for both 6 and 7' the minimum
is equal to zero.

The value of C; and correspoding estimate of the error for few values of 8
are given in Table 1.

Also, in the Table 1 are given values of the error criteria (see (3.13))
Gy ={[¢ (D + | L2}~

and the ratio G, /E? 1. The error criteria G 1 is calculated using the approximate solution

(4.1) and the corresponding exact solution [5] of the problem. By the ratio G, /G,
we see quality of error estimate proccdure presented here.
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4.2 Heat conduction in a sphere with exponential heat generation. In this
example we consider (2.2), (2.17), (2.3) with m—2 and T,=-0. Approximate solution
we take in the form

LS

6= 3.! (7—10 2% + 3 1403 + S (1—12P),

Constant Cy is determined by minimizing (2.18) with m=2. Error estimating
procedure is the same as in the previous case. Error bound is given bu (3.13).
The results for few values of $ are given in Table 2.

F(I=03eT, Ty=0, m-2 Table 2

g | T T T T T T
< 0.1 0.2 03 04 | 05 | 06 0.7 0.8 |
| “\:]_ I B D D . R S B
| |
| € ‘ 0.00008 | 0.00035 | 0.0008 | 0.0014 00023 | 0.0083 | 0.0045 | 0.0061 |
o I | . . o o I R |
gy | 43| 149 | 359 | 3869 | 1189 1717 | 3.206 3.92
. WY %1001 %1077 | x1077 | x10=7 | x10-6 | x10-¢ x10-¢ x 10~%

ar* f 0.017 | 0035 | 0053 | 0.0715 | 0.092 ’ 0.114 | 0.132 | 0.156
A, 9.83 | 4.82 316 | 2327 | 182 | 1487 | 125 .07 |
R - AR S e A A |
‘ |

B 01 | 02 03 | 04 0.5 | 06 0.7 0.8
o | 387 003 200 2459 [493 [ 667 | 10 | 121
U] %1075 | x10-4| x10-4| x10-4| x10-4 | %104 | x10-* | x10-3

4.3 Heat conduction in a cylinder with power law heat generation. We consider
now (2.2), (2.3) with m-=1, where the temperature dependent heat generation is
given by (2.19). Approximate solution to (2.2), (2.3) and (2.19), with m=1, we
take in the form

0 =T, (_520)"(1 ~)+C (34 t+12) (435)

The constant C; is determined by substituting (4.5) into (2.20) with m=1.
The constants A, nad B, are now given by

. 1 I I 1
A4, =min [~# rear "ol Bl mamr s } ’ (4.6)
n (@)~! n [T "+16 Cd-nin

B,=nT¢ . (4.7)

The constant B, has the value (4.7) since both 7" and 0 satisfy (2.3),. The
results of calculation for a few values of n and T, are given in Table 3.
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F(T)=T", m=1 Tuble 3

‘\'- 1 2 3 4 5
i T 0.6 0.6 gl o rast g
Rl 000666 | 000433 | 00066 | 0006
—D(CY) 1.29% 104 9.15x10°6 | 2.74x10-5 6.7x10-5
@t 0.676 0.645 075 | 0736
A 0.680 07208 | 0479 | 05839
B . 132 1.08 1.372 1.2005

G: | 18x10-2 473% 1073 1.2x10-2 1.1x10-2

4.4 Heat conduction in a sphere with power law heat generation. Let us consider
(2.2), (2.3) and (2.19) with m=2. The approximate solution to the problem
we assume in the form

0=T,+ 7 (1- )+ C, (%—?t”mm). )

Repeating the procedure of example 4.3 we get the results given in Table 4.

F(T)=T», m=2 Table 4
\\" 2 1 3 | 4 5
~ i L
T 0.6 06 0.7 0.7
i 0.0034 0.0017 000342 | 000171
_Eey 1911x10-5 | 9.76x10-6 6.59 x 106 2.01%10-6
A 0.748 0801 | 0.5808 0.6815
T 108 | 13712 | 12005
G>x10-3 33 2.3 236 1,16

5. Conclusions

In this paper we developed extremum variational principles for a class of
non-linear differential equations descibing stationary heat conduction in cylinders
and spheres. We assumed that heat is generated inside the body according to the
exponential and power laws. Thus we were lead to a non-linear two point boundary
value problem. For this problem we showed global extremality of a variational
functional with respect to specialy selected set of trial functions. On the basis of
this variational principle approximate solutions to a number of specific problems
are obtained. Error estimate of this approximate solutions are also presented. Ine-
qualities (3.13) and (3.16) give bounds to a sum of L, norm of the error and the
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value of the first derivative of error at r=1. Of course, G, and G, bound each of
the above mentioned terms separatelly.

Our approximate solutions, as can be seen from the Tables 1—4, have
remarkable accuracy. They are also in good agreement with the results of other
authors. For example in [1] the values of temperature for r=0 (+=0) are tabulated
for the problems we treated in 4.1 and 4.2. A comparison of those values
(obtained by numerical integration) and our values obtained from (4.1) and (4.4)
are presented in the Table 5.

F(T)=BeT Table 5
\\\ B ! m=1 m=2
N | o B
\\‘ 01 | 04 0.8 0.1 04 | 08
T(O) i |
eq. (6.4) 0.0254 | 0.1084 | 0239 | 0.01685 | 0.0699 | 0.1475
(6.8)
T(0)
0.0252 | 0.1090 | 0.238 | 00168 | 0.0706 | 0.1470
ref. [1] | k

Finally, we may state that the variational principle developed in [3] could
be successfuly used for the stationary heat transfer problems treated in this paper.
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VARIATIONALPRINZIP UND FEHLER ABSCHATZUNGEN FUR
NICHT LINEARE WARME LEITUNG PROBLEM

Ein Variational Prinzip fiir stationire Wirmegleichung mit Warme Produktion
ist formuliert. Dieses Prinzip ist angewendet fiir einige konkrete Probleme von
stationiren Wirme Leitung im Zylinder und Kugel. Gleichzeitig, Fehler Abschiit-
zungen fur einige Niherungslgsungen sind gegeben.

VARIJACIONI PRINCIP I OCENA GRESKE ZA NELINEARNO
PROVODENJE TOPLOTE

Konstruisan je varijacioni princip za stacionarno provodenje toplote kroz
cilindar i sferu i pri temperaturno zavisnih izvora. Na osnovu ovog principa na-
reno je priblizno resenje za nekoliko problema. Takode je ocenjena greSka ovih
pribliznih resenja.
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