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THERMODINAMICS OF INTERSTITIAL WORKING OF MICROPOLAR CONTINUA

J. Jaric and M. Plavsic

(Received 30.9. 1986., revised 8. 6. 1987)

1. Introduction

In order to model fluid capillarity effects Korteweg [1] formulated a constitutive
equation for the Cauchy stress that included density gradients. Specifically, he proposed
for study a compressible fluid model in which the “elastic” or “equilibrium” portion of
the Cauchy stress tensor T is given by

T=T (p, 0, grad p, grad* p)
| (1.1)
=(—p +alp +B/grad p/*)1 +6 grad p ® grad p +y grad® p

where p = p (x, t)is the density of the fluid at the place x at time ¢, where p, a,f, 8 and

v are material functions of p and temperature 6, where grad p and grad* p are, respec-
tively, the first and the second (special) gradlents of p with respect to x, with Ap = tr
(grad’ p).

To model viscous effects in the dynamic response of his fluids Korteweg added to
the right-hand side. of (1.1) the classical form of Cauchy and Poisson, i.e., A (tr D) 1 +
+ 2 u D, where D is the usual stretching tensor of hydrodynamics, and where A and w,
the usual viscosity coefficients, may depend on p and 6.

In the terminology of continuum mechanics, Korteweg form (1.1) is a special
example of an elastic material of grade /V, in which the constitutive equations are permit-
ted to depend not only on the first gradient of deformation but also on all gradients of
deformation less then or equal to the integer V. A troubling aspect of all these higher-
-erade models, however, is that they are in general incompatible with the usual continuum
theory of thermodynamics. Indeed Kotreweg’s model (1.1) is incompatible with conven-
tional thermodynamics unless all the nonclassical coefficients, a, B, 6 and vy vanish
identically.

What is required then is a new, broader thermodynamics structure that admits
nontrivial Korteweg type materials and, more generally, materials of arbitrary grade. To
this end Dunn and Serrin [2] modified the energy balance following the idea which was
suggested by Toupin [3] and in same way by Ericksen [4]. Specifically, for each process
m they postulated the existence of a rate of supply of mechanical energy, the interstitial
working # = u (X, t, n) defined for all (X, #) € B x R and unit vectors n, such that the
balance of energy for each subdomain P with its boundary
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d 1
— [ p(et —vv)dv= [ (vTn—qn)da+ [ p(vf+h)dv (1.2)
& Py 2 0P, Py
is replaced by
1 . A
— fe(e+—vv)dv= [ (Tanvtu—qn)da+ [ p(fv+h)dv (1.3)
dt Py 2 0P, Py

where during the process m = { x,0,en,T,q,f h { at the particle X and time ¢,

(i) x=x(X,1) is the motion,

(ii)) 6 =20 (X, t)(>0)is the absolute temperature,
(iii) e=-e€ (X, t)is the specific internal energy per unit mass,
(iv) m=n(X, t)is specific entropy per unit mass,
(v) T=T(X,¢)is the Cauchy stress tensor,
(vi) q=q (X, ?)is the heat flux vector,
(vii) f=f(X, t)is the specific body force per unit mass,
(viii) h = h (X, t) is the radiant heating per unit mas
and where

n=n(x, t) is the outer unit normal to 9P,,

v= % x (X, t) is the velocity,

P =p (X, t) is the mass density.

B is fixed reference configuration

(B CE, where E is a three-dimensional Euclidian space).

In this paper we try to apply the idea of Dunn and Serrin to more general model of
continuous media, namely to the model of micropolar continua.

2. Basic formulae and equations

Troughout this paper we use a fixed rectangular Cartesian system of axes. The
deformation of the body B is characterized by two fields: the deformation gradient
F =[xy k] and a rotation tensor X = [Xzx ], where Xy and xx are material and spatial co-
ordinates. Suffices range over the values 1, 2, 3 and the usual summation convention is
applied, to all indices unless an statement to the contraty is made.

The equation of balance for a micropolar body (C. B. Kafadar and A. C. Eringen
[5]) asserts. :

Balance of momentum

y :
— vdv=[ t_.da + fdv ' 2.1
dIP{p ajff_, ) P{ g &
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where t( 5 =nT is stress vector,

Balance of moment of momentum

d
-— Xxpvtpo)dv= rxt.. M da+ [ (x f+pl)dv 2.2
where
M(n) =m . &, M = {mkI} is the couple stress density,

g, are the spatial base vectors,

p o is the spin density,

pl is the external body couple density,
Balance of energy

; E d -
EPI p(et . vv+ov) v—a,; (t(n)v +M(n) v-qntu)da+t
t £ (2.3)
+ [ p(fv+lvth)dy

Py

where the angular velocity vector » (microgyration) is given by a second order skew —sum-
metric tensor v ; by the formula

]
Vk = — a2 €xim Vim* Vil T~ €kim Vm> (24)
where € o is Ricci tensor of alternation. _
Tﬁe gyration tensor v, , is associated with x, so that

Vel T~ Vik T Xk Xk (2.5)

The energy balance law (2.4) is modified by the term u, which represents a rate of
supply of mechanical energy across every material surface in B, on the base of the spatial
interactions of longer range. In fact u = u (X, ¢, n) cannot really depend on an arbitrary
fashion: an analogue of a standard theorem due to Caushy tells us that the balance law
(2.3) can hold for all subdomains P C B if and only if u (X, ¢, n)is linear in n, i.e. there
must exist a vector field u = u (X, #) such that

u(X,t,n) =u(X, t)n (2.6)
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for every unit vector n. If is in terms of this interstitial work flux u, rather then the scalar
density u, that we shall consider our theory. Further, we shall require u to be objective
vudder a frame change, i.e.

u (X, tx,nx) = u(X,t, n), 2.7)
which imply that u is objective, i.e.
X i 7
v (X, F) = Q(Hu(X, ). (2.8)

Entropy inequality

d da h
qg— = J = 10 (2.9)

dt p, P, p, 0

These integra: laws lead to the following field equations (Momentum)

etk +pf!=;)v, (2.10)
(Moiment of momentum)
mk!,it +Elmn rmn +pll - pflJ! (2'11)
(Energy)
p €= t Wit tmg vk - ay & +“k,k +gh (2.12)
(Entropy)
on + (_q_’f} p_h > 0. (2.13)
6 k0

By eliminating p/ from (2.12) and substituting this into (2.13) one finds

y % qy B,k
p(U+m0) 1ty Wpg+ve) — Mg v — g g - (2.149)

where ¢ =€ — 0 n is the free energy.
If we take into account that

‘ P N N
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ot Viel = Yt Xk X = TXX

1 ’
M Vi = — Emkl €mn Kot Xur )k Xk k=

sl 000205 Iy Xk k =
a i T_
=- { Mxgxx)} F'=

. ' T_
=~H{MxvxxT+MxxvxT} F )
than (2.14) can be written in more compact form, i.e.

pW+n8)—TIF-1F—Txx+
(2.15)

q8

+ [ Mxvxx" +Mxxo X} F'-! ~divu+—= <0,

where, by definition,

1
M= {mkmn=5mkl€!mn } ?

and g = grad 0 is the spatial temperature gradient.

We will refer to (2.14) as the dissipation inequality, and we will study the
thermodynamic consequences of (2.10)—(2.14) for the constitutive structure arising from
the assumption that €,7, T,M, q and u are given by smooth functions of the set variables

o (EE)
£ = (Fsv F& VZF’X-:V X; ‘72)(» ‘?’3)(,6,8,1:, X)s

i.e.

e =E(A) M =M (A)
n =1(A) q=q (A (2.17)
T =T (A) u = i (A)-

gf cause, once € (A) and n(A) are given, the relation ¥ = ¢ — 6 n determines a function
¥ (A) sucht that

(*) For any two tensors, I' and ¢, we define I" x ¢ to be the second order tensor such that (in

Cartesian components) (I'x @);7 = Iipg . . . &pq .. ;-
(**) Throughout this paper, asqin Dunn and Sermrin’s [2], ”V” will denote differentiation with
respect to the material coordinates Xz while “grad” will denote differentiation with respect to the

spatial coordinates.
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.-
V=M. (2.18)
3. Thermodynamic compability
Now, we assert that the responce functions (2.17) must be such that, by the chain
rule

p(Wg +m)0 +(p Yp +T F —')F +

+[(p wx—Tx))E+(MX>'<-v xT)FT“] +

. ¢+ T 8 il
tlov y v x+*Mxy xx —u,xy )F ']+ 3.1

toy gV ll?—(up XVF)FT“] +

to g, VEF Y2, 9t algs 9 X Y g oYy X+ Ui F -
= (uF xV F+u\7F xV2*F tug2g x'q3F +uxxvx+uwxv,2x+uvzxx\73x+uv3xx

AT o

xv4x—u6g—ugG+

where G = gmd*® 6, must hold for every motion X, every microrotation x and every
temperature field 0. In writing (3.1) we have used the fact that =" and ”-” commute,

eg. vF= oF, etc.
It follows that (3.1) is essentially linear in twelve quantities

6,V F, v x,v°F,v*xv *F,&X,F,G,v°F,g%x.

Therefore, (3.1) imply that

Ygtn = 0. (3.3)
] . T_
pvavF=(uF xyF)F ~1, (3.4)
N . . T___ =
pwvwi(Mxvxxi’luxxvx)F L=, (3.5)
x,bsz =0 l,[lg =0
i k=0 (3.6)

v x
UIVSF
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l.lg G=0 (3.7)
(25 x 7°F) F-! =0 (3.8)
(uvaxx v‘-‘x) FT—' = 0. (3.9)

What remains now of the dissipation inequality is the restriction that
T T ¢..: . . T_
(pvp—T FDF+[(py, —Tx+Mxxyx) F 11—
(3.10)
—(ug x yF tuop X v*F +uxxvx+uvxx VAD ¢ +uvzxxv,3x) F-upgt

Ak 20

0

which is called the reduced dissipation inequality.
The conditions (3.6) tell us that y is independent of

v2 Fs sz, v'aF’ g, X Fa
1LE.

v = U, gF X g% 0). 3.11)

In addition (3.3) shows that 7 s also independent of the quantities in (3.1) and that the
entropy relation

e A\
W=W(FaVstav’(,9)=~¢g(F,v F,x, vx,g) (3.12)

holds. Then, from the relation

~ P
e=e(F,vF,x, 9% 0)=V¥ F,vF,xyx0)—0 ¥, (F,vF,x.v x, 6) (3.13)

and (3.12) follows that n and € are completely determined by the response function y/l; for

the free energy.
The conditions (3.4), (3.5), (3.7), (3.8) and (3.9) are harder to analyze. In terms of

Cartesian coordinates they are, respectively

o AN
p——— Wi Xy — X, = 14
9%, k1 L dx; 7K
£ A
oy F uj *
”S Xk, L ¥ My Xonie — n )X 1 X%k =0 (3.15)
XkK L Xkk
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4y =0 (3.16)
= Y] " N.1) }

du; i

dox “Xp 1 X kLyp =0 (.17)
kK KLM
d 1

0 x Xp1*xx,pmunp =0 (3.18)
kK IMN

The conditions (3.14) and (3.15), according to (3.11), may be written in  equivalent
forms

- o A -
o uj o o uj - N a ¥ (3.19)
—aae + . = 2p .
L, K1
0 X k O0Xy s Oxy kL
) 't,t\z 01y »
'a T X oMy =P ;’\"* ~ X Xk 3.20)
kK AkK,L
Next, we observe that the objectivity o u means that u satisfies the equation
A ~ »
Qu(‘/\):n (QFaQVF! Qv2F9QX1Q v‘_fj n’:;Q ‘72X
(3.21)

Q ¢°x. 0,Qg, QF + QF,Qx + Qx)

1 A
L Q. Il we take Q (r)=

tor all orthogonal tensor—valued functions Q (1), where Q = dr

=e™  where W is skew, and evaluate (3.21) at 7= 0, we heve

u(A)=u(F,vF,v?F,xy %y X% v X8 F+WF,x+Wx,Q) (3.22)
for all skew tensor w. From (3.22) it follows that

ad 3; 3 aﬂ, ) 3 (3.23)
Xk T oo XK TV 2
i %,k [%/]

(

axk’K

Recalling the expression for My ;> We see that My = — My Then from (3.20) it
follows that
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A A
ouy IRV
my.,=(—— —p — ) . (3.24)
" Xk dxpgs MK [k1]
and
du )
0 Xxk 0 Xkk L (k)

The expression (3.24) represents the constitutive equation for couple stress tensor

My i-

Further, we have to investigate the consequences implied by the conditions (3.19),
(3.23), (3.25), (3.16), (3.17), (3.18) and the reduced dissipation inequality (3.10).
Genera]ly, this is very tedicus calculation. In any case, the presence of the strain rate F
and x in u is of crucial importance for our entire theory.

4. Interstitial working for elastic materials
From now on we apply the reduced dissipation inequality (3. 10) to those of our -

materials, for which T, M and q are independent of x.
For convinience in the next calculations the equations (3.20) can be written as

B8 ppani¥ b " 4.1)
— = My Xy e — , y
9 -2 Ikj MM 8 ka,L 1.L lkM
. G l,;;
- 2 3 3 . .
where Ay 0 = Apr (F.9E g ' F, %y by Xay %0, F, g)ie. 37 " is independent

of ;( Thus (4.1) is easily integrated, showing that u depends on X at most affinely, i.e.

ulezmM iMM+wl ('°-3F9g) ' (42)

Then (3.14) may be written as

( O A p . 2 wi , X0
Xmm %1k * K e X1K%L>
dxp g g dx; g I GD 0Xk kI 4
wherefrom we obtain that
04
ImM = 0, (4.3)
9 7K
xk,K . (L)
A
a le =p _a‘i}_._ X X (4 4)
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Further, from (3.23) and (4.2) it follows that

04
__ImM X = P, (4.5)
3x, x  Kk]

o wh

After some lengthy manipulations, it may be shown, from (4.3) and (4.5), that
A, 2 does not depend onF,
AImM = AlmM (Fa st V'st X> VX V'ZXavaxy 3) (47)

and

Wy =bimpr B,V F, 7F, % 7% 72X X, 0) X, 41 +5,(8) (4.8)

what follows from (4.4) and (4.6).
Using (4.7) and (4.8) in (4.2), we obtain

U, = Ay ®VF, 02 F, %0 X 9% V32X 0) Xpup

) 4.9
+blmM( )‘xm,M+sl( , &)
or, equivalently,
u=A@H)x+BH)F +s() (4.10)
where
H= {F,VF,VZF,X-,\?"X, \72st3x: G)rz
" (4.11)

reny s)

If we now enter (4.11) into the restrictions (3.7) we find that s must meet the condition

s, G=0. (4.12)

The condition (4.12) means that the dependence of s on g can be at most affine,
with skew linear part. i.e.

s = QH)g+sEH) (4.13)
and we have shown that the interstitial work' flux is oif the form

u=Ax+BF+ Qg+sf (4.14)
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In the next part of the paper we shall investigate the consequences of the
conditions (3.8) and (3.9) and dissipative inequality (3.10) on the form of constitutive
equations for T,M and q.
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TEPMOJAUHAMUKA UHTEPCTULIMAJIBHOT'O ZEMCTBUS MUKPOITOJIAPHON
CIJIONIHON CPE/BI

Ota padoTa OTHOCHTBLCA K TEPMOIMHAMMKE MHTEPCTHIMANBHOrO OAEUCTBHUA
MHKponosapHoii cpensl. Cornacno any u Cepuny [2] MbI H3MeHsieM pOpMY 3aKOHa COXpa-
HEHUs IHEPTUH 11 MHKPOMNOIAPHOM CIUTOMIHOM CPelbl U BLIBOOHM YCJIOBH KOTOPbIE NO/DKHHA
ObITh BBIMOJIHEHH (JIFOKCOM MHTEPCTHLUMATLHOrO JeucTBHsA. JINs cheuMansHOro Kiacca
MHKDOMOJIAPHO#M CIUIOLIHONW CPEAbl Mbl BBIBOAMM siBHYIO (GOpMy BekTOpa (tokca
MHTEPCTHUIHAIBHOTO AEUCTBHS.

TERMODINAMIKA INTERSTICDALNOG DEJSTVA
MIKROPOLARNOG KONTINUUMA

Rad se odnosi na problem nelokalnog dejstva u mikropolarnom materijalnom kon-
tinuumu. U cilju obuhvatanja ovog dejstva Dun i Serin [2] modificiraju zakon balansa
energije uvodeéi novu konstitutivnu fju — koja karakterise fluks intersticijalnog dejstva.
Koristec¢i ovaj prilaz u radu je izveden ekplicitan oblik ovog fluksa za'mikropolarni kon-
tinuum.
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