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ON THE STABILITY OF A STATIONARY MOTION
OF A RHEONOMIC SYSTEM

Aleksandar Baksa

(Received 13. 10. 1986., revised 5. 6. 1987.)

The stability of stationary motion and the state of equilibrium of a mechanical
system belongs to a narrow field of problems in stability, for which general criteria can be
found, according to which it is possible to discuss the stability. That is the reason why
quite a number of papers have been written on this topic, starting from, now already
classical, works of J. L. Lagrange, E. J. Routh, A. M. Lyaponov, N. G. Chetayev, and
other well known scientists till the present times. Although in this field there exist
important results, the problem has not. been entirely solved. One of the questins to which
we have not obtained an answer yet is which conditions of stability of the state of
equilibrium and of a stationary motion of a rheonomic system are necessary and
sufficient. In literature this problem has been considered, but mostly marginally, and
not in a complex manner to the extent which this highly interesting topic deserves,
213114

An attempt has been made in the present paper to arrive at some general statements
on stability and non-stability of the stationary motion of rheonomic system. The
question of the stability of the state of equilibrium, as a special case of the problem
mentioned above, has also been discussed to some extent. The presence of the parameter
denoting time in equations of the disturbed motion leads to a number of peculiarities,
because of which this problem is distinguished from an analogical problem for
scleronomic systems. This, on the onc hand. makes the problem more interesting, but on
the other, leads to a series of new, not naive at all, problems. The questions considered
here are not of theoretical importance only. There exist quite a number of practical
problems whichg belong to this part of mechanics, e.g. statlonary motion of gyroscopic
systems on a moving platform.

1. Stationary Motion and State of Equilibrium
of a Rheonomic System

We propose to consider a system of particles the motion of which is constrained
by holonomic constraints

0% | T e e (1.1)
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where 7. is the radius vector of the particle M, with respect to the inertial system of

reference. If ¢ (i = 1, ..., n = 3N —K) are independent generalized coordinates, and if
we introduce the notation g = (g", ...,¢") ER", then we can write
=7, a) (1.2)

The kinetic energy of the system is

1 ®7 oF )
T= —ial_jq’cﬂ+a1.ql+ao (1.3)

where @, a; and a, are functions of both r and g. Let the system be acted upon by
forces, the potential of which is IT1 = I (¢, g) as well as non-potential generalized forces
0,=0,( 4 q).

The motion of this system will be described by equations

2229 @-T-T Q=@ 0,) (14)
dr 9% 9q =Tl L= Sy '

We shall assume that the system considered has € (8 < n) cyclic coordinates, and
that the numeration of coordinates is carried out in such a way that qk K=Ll..m=
=pn — {) are positional (not cyclic) coordinates, while g% (@=m +1, ..., n) are cyclic
coordinates. From (14) there follows that the first integrals of motion (cyclic integrals)

n

o . »
pa(t,ql,...,q gt .. a) =¢, (c,=const.) (1.5)

coorrespond to the cyclic coordinates, where p  are the generalized impulses which
correspond to the cyclic coordinates

ol

In our further deliberations we shall use the notations

m+1 n

» m n - =
=10 i B =@ e b =(Bpyqs-aly) (1.7)

It is well known that a system with cyclic coordinates can, under certain
conditions, carry out a stationary motion, i.e. a motion in which position coordinates
have constant values. For a stationary motion, thus, there follows

!

q¢=q,,4 =0, p=c. (1.8)

Provided the integrals (1.5) do not depend explicitly on time, generalized velocities,
which correspond to cyclic coordinates, will also be constant in a stationary motion, for
instance, in case of scleromonic sistems. Such a motion we shall call a stationary motion in
a narrower sense of the word, or mero-static (uepo{ — a part, portion). Especially if

* 5

¢” =0 the equalities (1.8) become
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q=qo, c §=0 (1.9)

and determine the postition of relative equilibrium of the representative point ona
configurational multiplicity of a rheonomic system depends on time (time being taken as
a parameter), i.e. it is formulated by the mapping

Mn X R > EsN (q, t) g (r_:n "‘l;;)

Wthh means that the point g € M" (g, = const.) is mapped to a fixed point (’? "
) € g3V , and vice versa, constant generalized coordinates need not correspond to a

n xed point in E3 . Only in the case if from (1.2), for ¥ € R and g =g, , we obtain

-

r,@tq0) =r) ¥ =1,..N).

A state of equilibrium of the system considered with respect to the inertial system
of reference will correspond to the point (go, 0) € TM"/TM" — a tangent bundle).
From this it follows also that the state of equilibrium of the system, in generalized co-
ordinates, can be determined by the function g = ¢ (¢) for which there holds

7, (6 q )= 2

It is quite natural to raise the question of which conditions should be satisfied by
the constraints (1.1) in order that the system could be in its position of equilibrium. That
a position of the system § rv} , allowed by the constraints, could be a position of
equilibrium, 1t is necessary that the class of possible velocities in that position should
comprise a “zero element” {"v w0l C ¥ =1 For the constraints (1.1), the possible
velocities are those that satisfy the condmons ’

d0fa dfa
g
arv a1

That a system could have its position of equilibirum{Fﬁ }, it is necessary that
~position be allowed by the constraints, and that in that position the following equalities

dfa

O .1t ?v =—r>v*
hold good. In a position of the system, in which the equilities (1.10) are valid, possible
displacements are simultaneously virtual displacements.

= Duke £ER (1.10)

NOTE. Systems for which possible displacements are simultaneously virtual
displacements are called catastatic [1]/kata — according to/. A characteristic of these
system is that they can have a state ot equilibrium. Since the systems in which there
exists at least one point in which (1.10) is valid, can also have this property, we shall
consider them too as catastatic. [
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The motion of system with cyclic coordinates can be described conveniently by
E. J. Routh’s equations. If Routh’s function is defined by

R(6.4.4.p) =L -pyi" = Ry +R, —II*

then Rout’s equations are

d 3R, R, . da om

i - = o B _ - + 1.11
Y Y A ANY 3 gk Ok (1.11)

apa ap, o
where
ej ek ~ -f-k
2R, “(ak a aajaﬁk)q 4 “endyq
e Q. of oo =
Rl—(a]. pa+aj—ajaa )q =a;q (1.12)
L o I o
* _ - - _
=1+ . a " pyPg—a pa+2 a - agag—ao

In order to make the stationary motion (1.8) a solution of the system (1.11), it is
- necessary and sufficient that for each

0]

~ ] a r r
— a7 (t, g0, €) — 8—6;7; I (1, qo, ) + @ (1, 45, 0, ) =0 (1.13)

holds good. The following geometrical interpretation can be ascribed to these equations.
Let us denote

da, an*+Q
0, =— — »
k 3¢ 3 q* &
The system of equations
0y (t,q', c)=0 (1.14)

in which ¢ is considered as fixed, determines a sub—manifold v CM " of a dimension not
higher than n — m, which depends on time (considered as a parameter). Those solutions
of (1.14) which do not depend on ¢, correspond to the stationary motion, i.e. the
solutions ¢ "= q ' (c). Thus, stationary motions of the system (1.11) belong to the set 7,
of fixed points of the multiplicity .

In the case if the system is moving under the influence of potential forces only,
Routh’s potential on the stationary motion will have a stationary value provided only

that
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Ba . s
R L ydg, C) =
e L R

which is evident from (1.13). This condition is trivially satisfied for gyroscopic non—

—constrained systems (z; = 0), as well as for system in which@; do not depend explicitly
on ¢ (for example, scleronomic systems).

If the integrals (1.5) do not depend on #, the equations (1.13) will, for e 0,
represent necessary and sufficient conditions for the representative point g, € M" tobe
motionless with resprect to a configurational multiplicity (a state of relative equilibrium).
In a general case (if the system has no cyclic coordinates) the necessary and sufficient
conditions for the relative equilibrium are, (which follows from (1.4)).

da; OJag o1l

- + o o -+ Q. = 0. 1.15
818 9 q' < {1

Finally, here we shall add yet another remark, which will be useful later on for our
considerations. The function

H =R, +0* (1.16)

has a derivative in terms of time, this derivative being composed in the sense of the
equations (1.11),

vt - S (1.17)

If R does not depend explicitly on ¢, and if @, q = 0, it follows the first integral
R, + IT* = const. (Jacobi’s integral).

2. Equations of the disturbed motion

Let us assume that there exists a value of the parameter ¢ for which the set vy, is
not empty, i.e. that the sustem can perform stationary motion

!

q =0, 4 =0p=c 2.1)

(an appropriate selection of coordinates can always make sure that go = 0). We propose
to consider the stability of this motion by 1gn0rlc cyclic coordinates g ' (that will be a
stability with respect to part of variables ¢ ! 4 ‘and p). If we denote the disturbed motion

q =q" @), p=ctn( (2.2)

the equations of the disturbed motion are

diptd s 4 Bills o oo B e B

il e g i IV = x ii) n,=0 2.3
dt 3qF T 3¢ aqk O i) g (2.3)
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where all terms of these equations should be considered as functions of the variables (2.2)

From (2.3 ii) it is evident that in the disturbed motion the integrals ng = 7,(Y, =
const., p =c¢ + ) are valid. If these values are substltuted in (2.3 i), we shall obtam a
closed sub—system of differential equations in terms of ¢'. We shall note that g =0is
not a solution of that system because

ok(t, 0,¢ty)#0.

Thus we can say that (2.3 i) are the equations of the disturbed state of equilibrium
g = 0,3 =0, of the “reduced” system under constant action of disturbations. The
functions 0, can be expressed in the form of

e

g ety) =0, (6,4,4, ) tp, (14,4 c*y).

Since 0 (¢, O, O, c)=0 thcre follows that the functions p; are generating constant
disturbations. This means that in’this case disturbations are represented by a known
function (the so-—called potential disturbations).

In an analogous way it is also possible to derive equations of the disturbed state of
equilibrium. If the system of coordinates is selected in such a way that the state of
equilibrium is at the point ¢ = 0, and the notations of coordinates ¢ and ¢ retained
for the disturbations, then the equations of the disturbed state of equilibrium are of the
form (1.6), provided we assume that the generalized forces are annulled in the state of
equilibrium.

3. Conditions of stability

We propose to investigate the stability of the stationary motion considered by the
application of Lyapunov’s direct method. We shall begin our investigations by considering
the system for which the following assumptions are valid:

1° Gneralized forces Qf on the non—disturbed motion are annulled;

d a,

® —%£ =0

at

3 R, is positive definite in terms of ', and it has an infinitely small upper limit
when ¢’ = 0, and

4° In the vicinity of the point (0, ¢), II* (¢, ¢/, p) is uniformaly continuous in
terms of ¢.

Under these assumptions we see that

' #

V(tq,3) = R (t, g, q)+1* (t,q',p) —TT%(, 0, ¢)

isa Lyapounoff’s functiona. Its derivative in terms of time, composed in the sense of
equations of the disturbed motion (2.3), is

ok G poer % ' %
= 0.9 = a—t—[Rz (tq.q)-1"(@q,p)+ 1 (1 O,))
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On that basis, for systems which satisfy the assumptions 1° to 4°, it is possible to
formulate

THEOREM 1. If Routh’s potential II* at the point ¢' = 0, p =c has an isolated
minimum for each ¢ € R, and if in the vicinity of the point ¢' =0,q" =0, p =c¢, the
inequality

a roey ] ok
— R (64,.3) - (¢, )+ 17 0, N~k g" >0

is valid, then the stationary motion (2.1) is a stable one with respect to the variables
q and §'. :

If, in addition, IT* has an infinitely small upper limit when ¢’ = 0, and the function
p (t, ¢', @) is a uniformly continuous on in terms of ¢, the stationary motion is uniformly
stable with respect to the variablesq’, ¢, p.

The proof of this Theorem follows from the general theorems on stability of the
direct Lyapunov method.

The Theorem 1 provides ample conditions of stability of the stationary motion for
a considerably narrower (althoughnot = a rare one) class of mechanical systems. In a
general case, the analogous conditions of stability are unknown to us. For the analysis of
problems we can use the following method. Since the function H* does not necessarily
have a stationary value on the non—disturbed motion (2.1), an attempt should be made
that it be substituted by the function w = w(¢, ¢, n) € C' which should be such that
R, +w is a positive definite function. In that case, sufficient conditions of stability are
provided by the

THEOREM 2. If there exists a function w (t, ¢, ) € c(1-1.1) and strictly
increasing functions

0 iR A Buri 208 50 0BT H 24314

such that in the vicinity of the point ¢’ =0,4' =0, n = 0 the following is valid

¥ 6, (1g'l) <R, (tq',q") < 0,(lg"I)
z 95 (lig' 1l + linl) < w(t,q,n) < 05 (llg'li+1inll)
ow o n*

0
+k ‘
- - - — Ry *+R, ~w) <0
(qu aqk Qk)q at( 2 1 )

then the stationary motion (2.1) is a stable one with respect to ¢’ and q'.

If in 3° the sign of equality is valid when and only whengq'=0, §'=0,7 =0, then
the stability is asymptotic. O

The proof of the Theorem 2 follows from the general theorems on stability of the
direct Lyapunov method.

The stability conditions in terms of g', §', n, as well as the conditions of a uniform
stability can be formulated in a way analogous to one used in the Theorem 1.

Since the state of equilibrium can be considered a special case of the stationary
motion, we shall not divulge any more on the investigations of conditions of such a sta-
bility. An attempt, however, should be made to find an analogon to the famous Lagrange
—Direchlet theorem.
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We shall assume that the system (1.4) is moving in a field having a potential II (z,
q) (Q = 0), which has a strict minimum at the point g = 0. In order to enable this point
to correspond to the state of equilibrium of the system it is necessary, according to
(1.15), that

da, 0a;
aq’ ot

and that the constraints satisfy the condition (1.10). Sufficient conditions of stability of

this state of equilibrium are provided by the
THEOREM 3. If the potential energy in the state of equilibrium has a strict

minimum, and if in the vicinity of that position

Ty

Cdt

3
— - ) >0
3¢

then that position of equilibrium is stable. [J

The proff of the Theorem 3 follows from the Lyapunov’s first theorem, provided
we take V = T, + II for Lyapunov’s function, while bearing in mind that T, is a positive
definite quadratic form in terms of §.

4. Conditions of non—stability

The determinations of conditions of non-stability of a stationary motion is a
complex task which even for scleronomic systems has not been solved completely. The
problem is complicated by the presence of terms having the character of gyroscopic
forces in equations of the disturbed motion, since they, as is well known, can be
instrumental in providing stabilization of a non—stable motion (the so—called gyroscopic
stabilization). This makes considerably more difficult the application of the direct
Lyapunov method in the in vestigation of non —stability. We shall consider here the non—
—stability of a stationary motion in case if equations of the disturbed motion have first

integral.
THEOREM 4. If the equations of the disturbed motion (2.3) have first integral

gt q. 4. m e cHbY £(0,0,0)0=0

and if
1° for an arbitrary € > 0, there exist sets

.

G={(tq, 4 net.q.qd . n}>0 ,B.={(t.d,a " maN+11g'1l+Imll <

such that G NB_ # ¢

by OR &
2 ¢ # Y= ﬁ(t,q,q,n)l—a-é-,;q >0} CG
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So Ol 2
3° R, +R H(— +0)4d" >0 for (¢4 n)EVY
dq k
and thus, the stationary motion (2.1) is non—stable. [
Proof. The function '

o RN
el

satisfies the conditions of Chetayev’s theorem in the sense of the equations (2.3), on the
basis of which there follows the statement of the theorem.
Consequence. If there exists the first integral of equations of the disturbed motion
of the form
gt.q'. ¢ . m=H(tq.qd. n)+v( qn)
the condition 3° can be replaced by the non—equality

: e oll k
3a [I+'y+(—a?—Qk)q o

Proof of the consequence. Since on an arbitrary disturbed motion, which starts
from the region Y the following

g=R, +M*+y=¢ > 0 = Ry, =c-—y-II"

is valid, the expression of the left—hand side of the non—equality 3° can be transformed
in the following way

)qk-

Jd R
2R2+R1+( "’Q )q e
q

On the basis of this relatlonsth and the condition 3°, there follows 3.a°, which
was to be proved.

In the case of conservative system, the Theorem 4 is reduced to the well known
result of M. Laloy, [5].

EXAMPLE 1. A particle is moving along a smooth ellipsoid

() (? +y?)+a? 2 =a? 2(t), a€R,c ()

in a force field, the potential of which is 21 = —mk? (x? +y2), k €R.
If the independent coordinates ¢ and g are introduced by a substitution

x=acosfcosy, y=acosfsing, z=¢(f)sinb

the kinetic potential L-is
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2L =m [(@®sin®0 + ¢? cos® 0) 0% +a? p* cos® f+ccC fsin 20 + 6%sin®0] + mk?a*cos® 0

A generalized impulse p = ma® { cos? f corresponds to the cyclic coordinate ¢,
while the corresponding Routh’s function is
2

m L - k! “ p
R = 5 [(@® sin® 0 +c?cos?0)6%+cc O sin 28] — P +

m o
+ — (k*a®cos? 0 +&? sin®0)
2

The equations of motion of the particle have the cyclic integral p = 7. For the
existence of the stationary motion 6 = 6, it is necessary and sufficient that

2p? sin 0
et +k*g?)sin20+ ————— =0
( ) m?a® cos®0
whence there follows
1) 6, =0 — stationar’ motion along the trajector C:z =0, x? +y? — g% =0 (exists
for an arbitrary function ¢ ()),
2) 6, —solution of the equation

cos* 0, =72 /m?a? (cé + k%a?)

— stationary motion that exists only provided the function c(#) satisfies the condition ¢¢ =
= const.,

3) for y =0, states of equilibrium are obtainable:

a) 03 =0 — equilibrium multiplicity x*> +y? —a? =0,z =0;

b)0; 4 =%t7/2(x=y=0,z=2%c (1))

We shall now investigate the stability of the stationary motion 1). Since

. p? 1 1
N*= ———— — — mk?a*cos?0 — — mc? sin? @
2ma* cos?0 2 2
we obtain
om* 3 1n* 72
| =0, = +m(a*k? - c?).
(ae )a=0 (332 )6=0 ma* ( )

This motion will — according to Theorem 1 — be stable provided
v? +m2a® @k? — ¢2)>0 (a®sin?0+2c¢ cos?0)0% — 2¢¢sin%.0 >0

It is raedily seen that there exist functions ¢ () for which these conditions are
satisfied (e g. (c; +a* 1)'/2).
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5. Systems with quasi—cyclic coordinates

Let us assume that in the system considered with n degres of freedom of motion,
the coordinates gk (k = 1, ..., m) are position coordinates, while q%(a=m +1, ..,n)are
quasi—cyclic coordinates (if in the system there exist cyclic coordinates as well, we shall
assume that they too belong to this set of coordinates). In Routh’s form, the equations of
motion of this system are

d. ARy . aRs Cdtse Ol ls il
s i ek P et e
dt 3q dq / ot 0q
dR 9 a;
e Qog * ey 2 0K (5.1
q apa L] pa Qd Qk Qk apa Qa )

The existence of quasi—cyclic coordinates, as compared with cyclic ones, does not
require the existence of first integrals of motion. Only in the case if there exist functions
fa (t, @) such that the generalized forces which correspond to cyclic coordinates can
be expressed in the form of O, =f (¢, ¢") will there exsist integrals of motion

P, t.q,4") —8,(t,q") =Cq (52)

For example, if the forces generally potential, the potential being V(z, ¢, ") = Bi:';i,
8,=0,(t, q'), we shall have .

do IV (7 W 1) B0,

Qa_d_t aé“—aq“ dt

so that the corresponding first integral is p,, — 04 '= Cq
The system with quasi—cyclic coordinates is able to perform a stationary motion

k k
4 =q¢, Pyu=€ (40, £ =const.) (5.3)
provided the following, on that motion, is valid

dog AAHTE
“or awF %tk GO (54)

It is readily seen that the equalities (5.4) represent necessary and sufficient
conditions of the stationary motion of the system (5.1). There are as many these
equalities as there are parameters (5.3) so that, under certain conditions, they can have
isolated solutions in terms of g¥ and Cq» Which, provided they do not depend on ¢,
represent stationary motions of the mechanical system.

In a special case, if @ =0, form (5.1) we obtain
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oR 0
» O ~ ok
§=—-—=-— l[agq -T"(q,p)]
dPq 0Py
so that on the stationary motion
v (X a
q —_ap " (t,c, q0) = so(t):'q—q (0.

Let us assume that the system considered can carry out a stationary motion

o 4
a =0, p,=c, a4 =4q (D (5.5)

If that motion is considered as non—disturbed, let us designate a motion disturbed
with respect to it by

" =d" @, py=c @, =" O +£* @ (5.6)

The equations of the disturbed motion are

d 3R, 3R, _ ,j oda oI

s = g +
at agk agk W T 3 q* k

(5.7
- oR 9 Iy )

i) e
) £ YT b 0

Mg =M% 0,¢), ¢, =a; (t,q’, ¢ +n), R,Q= fonct (t,q'.q', c +n).

Since the disturbances appear only in equations 5.7 ii), we can, in order to simplifi
the problem, in this case as well, ignore them, and proceed to investigate the stability of
motion (5.5) with respect to a part of variables g "and p.

THEOREM 5. If on a stationary motion Routh’s potentlal I1* has an isolated
minimum, and the function R, is positive definite in terms of ¢', and if in the vicinity of
that motion

0 : k 0 dR oR <
kD Ty TS
9 p, 0t
the motion is stable with respect to the variables ¢’, ', n. O

The proof of this theorem follows from the general Lyaponov theorem : on
stability provided we assume the Lyapunov function to be R, + 1I™.

Since the system considered can perform a stationary motion on which the
potential IT* does not have an isolated minimum, it appears that the application of this
theorem is rather limited. In a general case an attempt should de made to find a positive
definite function

' 1,1,1
W(t,q,n)EC( )
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such that

on* aw),k+(8w aRl)Q 3 L3 pngidont
— 2 oo -w) <
TR P QAIBE gy | gy o U0

d
Et_ (R2 +W)=(Qk i,

If, in addition, R, is positive definite in terms of ¢ too, the stationary motion will be
stable.

In a special case if there exist integrals (5.2), the investigation of the stability can be
simplified to some extent. After working out the generalized impulses, from (5.2), and
after their substitution in the first group of equations (5.1), the problem of investigation
of stability is reduced to the one we considered in Section 2.

EXAMPLE 2. Heavy particles M, (of mass m,)and M, (of mass m,) are connected
by a non-stretchable, perfectly flexible thread passing through an arbitrarily small
opening O in a horizontal smooth plane m, which moves translatorily according to the
law of { ={ (¢). The particle M; moves in the plane 7, while the particle M, moves along
the perpendicular through O. The particle M, is acted upon by a force, the centre of
which is at O, its intensity being F' (7).

If r and p are chosen for independent variables (7, ¢,z (z | 7) — are cylindrical co-
ordinates), the kinetic energy T and the potential energy Il are

2T =mf*+2m,y CF+myr? & +m§?, M=myg(r+5), m=m; +m,
The cyclic coordinate is ¢, and the coiresponding generalized impulse is
p=mrt¢ = o=p/mr’

For Routh’ function we obtain

d Lescagg?. ¢ p?
= —mr-t+my §r — — My gr
2 2m1 r2 s
while the corresponding equations of motion are
p?
mF + my § — 3 Wimd g/ =0, 10 pIEl

mr

In order that the stationary motion r = ry, p =¢, should exist, it is necessary and
sufficient that

= mag = tme §
mlro

0

r

(which is feasible, for instance, whit Q, =m, £,c2=m ,ngrg).
The equations of the disturbed motion are



A. Baksa

- (c+n)? c?
5~ + =0, 7=0 (>n=n
my (ry +&)° m f’g ( 0)

and they do not comprise ¢ (the autonomous system thus obtained can be analyzed
further on by classical methods).

The system could perform a stationary motion under the action of the force
Qp =_ k%7, too (in that case, the coordinate ¢ would be a quasi—cyclic one). Then we
would have

p=—k*r > p=—kirty

and the equations of the disturbed motion would be
i - k* 8 c?

mE — - ¥ — =0 (c=—k’ro +7)
my (ro +§) myry

n= k't = n=—k*E+n,.
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SUR LA STABILITE DE MOUVEMENT STATIONNAIRE
DE SYSTEME RHEONOME

On considére un systéme dynymice holonome rheonome qui se ment dans un
champ des forces avec potentiel sous I'action des  forces généralis¢is sans potentlel On
determine les conditions du mouvement stationnaire et on etudie la stabilitc¢ de ce

mouvement.
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O STABILNOSTI STACIONARNOG KRETNJA REONOMNOG SISTEMA

Razmatra se reonomni holonomni sistem koji se krece u polju sa potencijalom u
prisustvu nepotencijalnih generalisanih sila. Pretpostavlja se da sistem ima kvaziciklicne,
odnosno, cikli¢ne koordinate i da moze da vrs& stacionarno kretanje. Ispitani su uslovi
pod kojima je mogucée stacionarno kretanje (kao specijalan slu¢aj postavljeni su uslovi
ravnoteze). Teoremama 1 i 2 dati su dovoljni uslovi stabilnosti stacionarnog kretanja, pri-
menom direktnog Ljapunovljevog metoda. Za specijalnu klasu sistema (koji zadovoljavaju
uslove 1°—4°) ispitana je stabilnost stacionarnog kretanja na kome Rautov potencijal ima
minimum (teorema 1). Za slucaj kad jednacine poremeéenog kretanja imaju prvi integral,
dati su dovoljni uslovi nestabilnosti stacionarnog kretanja (teorema 4). Za sisteme sa kva-
ziciklicnim koordinatama dovoljne uslove stabilnosti stacionarnog kretanja pri kome
Rautov potencijal ima izolovani minimum daje teorema 5. Rezultati su ilustrovani prime-
rima 11 2.
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