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1. Introduction

Let us denote by X the space of continous functions having continuous
SEMN L e S e T ' -
Horivatives — —, ——, ——, —— in R x [0, ). For ¢ < 0 these functions
0x2 0x0y o0y* o012
wanish identicaly. In this space let act two endomorphical operators M and L
which apply only on the time variable ¢ whith following properties:

(I) operators are linear
(II) operators are continous
(IIT) operators are real

(IV) there exists 7 > 0 in the sence that M, L + aM, a = 1, 2,3 are regular
operators for ¥ t €0, T].

The continouity of operators should be considered in the sence of [1]. The
third property-reality of operators-should mean that from a real function by ap-
plying said operators aloways follows a real function.

Let the functions 6z, 6y, Tzys Sz, <y and yzy be from X. Between them exsist
the following operator relations

Gx:L(5x+5y) JFZM Sx (11)
oy = L{ez + cy) +2 Mgy (1.19)
Toy = M Yay & M sl
oy

gx = —— 1.2
S (1.2)
s TR (1.29)
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U =u(xy,t) (1.3}

v =0 (x,1) (1.3%)
00z Oty _ (1.4)
ox oy

q_‘.rfy_ _f_,()?_y = () (1.4c)
0x oy

In the case when L and M are simply operators meaning multiplication
with a constant, then a,, Oy, Tzy are the components of stress tensor, describing
the usual state of linear elastostatics. In a similar maner we can also treat the case
when M and L are operators, defining multiplication by timedependent factor.
In the general case when « and o are arbitrarty functions including time ¢ and
M in L are operators with properties (i—iv) we shall denote the equations (i—iv)
as a basic sistem of equations of linear visco-elastostatics. In [1] M. E. Gurtin
and E. Sternberg gave the solution of this sistem for considerally broad class of
operators L and M considering somehow different conditions as compared with
(i—iv). In this paper we shall show a possibility of solving the sistem (1.1)—(1.4)
at least in a formal sence in an analogical way if compared with the classical state.

2. General equations

The equations ( 1.1)—(1.4) we can satisfy introducing

2 2 2
W U 2U_eU -
0 y2 0x0Yy 0 x2
U=U(x,y,t)
As well as in classical state we find here

6z + 0y =2 (L + M) (e; + ¢,) (2.2)

1
2Mes= — oy + 2-(L +2 M) (L + M) (o5 + o) (2.3)

1
2Mey = — 6z + E (L+2M)(L + M)-1(c, + Gy) (2.4)

Following the deduction [2] we must consider the consequence imposed by

(i1). Thence it follows that the operators L and M commute with operators of par-
tial derivation on space variables as well as with operators of integration over a
subset of R2. When these properties are considered in the compatibility equation
(}2 Sy ()2 E?{ - 62 Yﬂ

(2.5)
0 y? @ x® 0x0y

as well as equations (2.1)—2.4) it follows
(L+2M)(L+M1AAU)=0 (2.6)
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Finally, by observing (iv) we get at once

AAU =0 (2.7)
Thus our deduction also follows to
U= Re[z¢(zt) + x(21)] (2.8)

In (2.8) the ¢ (2, 2) and ¥ (2, 7) are analytic functions of z = x + ¢y, while the
time ¢ appears as a parameter. Now we find the relation

— (—c—}ﬁ +i9£) =@ (zt) +2¢ (2t + Y (2, 1) (2.9)
0Xx B

By a dash we denote derivatives of = while ¢ (2,¢) = d y/dz. The left side of
this equation has an analog sence compared with classical state. Further from (2.1)

6z +oy =AU (2.10)
and then considernig (2.7) also
6z + oy = 4 Re[9’ (2, 7)) (2.11)
and
2M€z=—62U+2(L+2M)(L+2M)(L+M)_1(M (2.12)
0 x> Jx
D2Mey = — A S B e A A f) (2.13)
oy? 0y
By integration and observing (1.2%) while adding we get
2 M (u + iv) = —(ﬂ+z"’—‘—’) +2(L+2M) L+ Mo (0 +
0x oy
+1C @)z + Ci(z) (2.14)
where it should be noted
C®=C (2.15)

This is a real function dependent on the time ¢ only. Ci(z) however is arbit-
rary complex function of time ¢ only. Introducing a new operator

KzZ(L—]—ZM)(L—}—M)“l—I:(L—|—3M)(L+M)—1 (2.16)
in which I is the unity operator, then by supposition C (1) = C1 (z) = 0 from
(2.9) and (2.14) follows

2M@u +iw)=Ko(zt)—z2¢ () —d (1) (2.17)

The elements of stress tensor are given by the same relation knownin the classical
state. We already have (2.11) as one of these. The other two follow from (2.1)
and (2.8). ;

By the same way known from classical state it can be proved in this case
that there can be found for each given stress tensor a biharmonic function U (x, y, 1)
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which can be defined up to the additive term g Ox+b@y +c(). ale), b(r)
and ¢ (¢) are arbitrary real functions of the time ¢ only. The functions ¢ (z, ¢)
and ¢ (2, z) however can be determined when the stress tensor is given up to the
additive terms i C(¢) 2z + Cy1(¢) and Gy (¢). C(¢) is a arbitrary real function,
while Ci (¢) and Cq (¢) are arbitrary complex cunction of time only. In the case,
where the displacement u -} i is given hold two additional relations

C()=0 (2.18)
KCi(t) — Ca () =0 (2.19)

All the proofs for these statements can be readily seen through the classical state
and can be omitted.

3. Basic boundary-value problems
and uniqueness theorems

The definition of the first and the second boundary value problem remain
unchanged when compared with the classical state. Of cause in our case the former
constants become functions of the time ¢ only.

When defining the first boundary value problem in which on the boundary
C the loads f (2, t) [2] are given, the time ¢ appears as a parameter. When denoting

F@)=¢(20) +2¢ (20 + § (20 3.1)
and from the equation
J@ @) F(z)ds — ¢ (5, 0) F () d2] = — 8 ‘[ [ {Re[9 (2 0)]}2d S (3.2)
it follows when given f(z,7) =0, z € C:
?(2,6) =i C(t)z + C1 () (3.3)
Y (22 = G2 (2) (3.39
@ =p@O=p@O=...=ox® =Ci () + G (2) (3,5)

C(¢) is a real arbitrary function, C;(¢) and Cs (¢) however arbitrary complex
functions of the time only. If the region is infinite becomes Gl =1

When defining the second boundary value problem in which on the boun-
dary C of region D displacements g (2, ¢) are given there is the approache quite
more difficult compared with the classical state.

We define - -
G =—Ko(z1) +29 (51 + (s (3.4)

and apply the formula
L{ [~ ¢ (58 G(2)dz + ¢’ (2,2) G (2) de] =
=4i[ [{Re[¢’ (2 D1 (K — I) Re[9’ (2, 1)] + Im [’ (2, )] (K — I) zm [ (2, )] +
) +2Im [ (=, 0} df (3.5)

When g (z,7) = 0 on C, then.is no possibility to follow the classical ap-
proach. It is necessary to put additional conditions upon the operator K. Con-
sidering this restriction we now prove
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Theorem I

If for every real function f(z, ) € X and ¢ € [0, T] holds

D(=fG)K—2)f(=t)ds =0 (3.6)
D
then from g(2,t) =0, 2 € C and from the equation (3.5) it follows
@ (2,0)=0,2eD <1e[0, T] (3.7)

Proof:

If (3.6) holds then from g (z,¢) = 0, z € C from (3.5) follows
te[0, T > Im[p’(2,8)] =0, 2eD
and further

@ (2,8) =7r(t) (3.8)
where r (¢) is an arbitrary real function of time only. Also from (3.5) it follows
for t [0, T

r()(K—Dr()=0 (3.9)
From (3.8) we get
o (20 =r()z+ Ci() (3.10)

where Ci (¢) is for the time being an arbitrary complex function of the time only.
Further from g(2,¢) = G (2,1) = 0 it follows

F(@=G®B) +K+De(z)=K+I[r@z+ Ci()] (3.11)

This can present the first boundary-value problem, which can be solved by the
same functions as in the case of the second one. General solution of the problem
(1.10) however can be expressed explicitly:

@ (2, 1) :—;(K +Dr()z+1C>0)z+ C () (3.12)
Y (2 1) = Ca (o) (3.13)
Co(t) + C(®) =(K+1I)C1(v) (3.14)
By equalizing expressions for ¢ (z,¢) from (3.10) and (3.12) we get
tel0; T] = CL{B= 0 NK —~z)#{t) =0 (3.15)
Also because of K — I =2 M (L + M)-1 it follows
tef0, T} =>r()=0 (3.16)

thus it holds (3.7).
Further from (3.10) and (3.12) we have .
Cu (1) = Gy (1) (3:17)
@20 =Ci (1) (3.18)
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b (2 t) =K Ci(2) (3.19)
In quite a similar way we can also prove the

Theorem II If there exsists a contious function fo(z, ©) which is defined for

te[0, T] and t€[0, ] and has positive values everywhere exept at v = ¢ and
which asures for each real function f(z,¢t)eX and r€e[0, T]
t
D)= [ffo(t;, ) DP1(x)dT =0 (3.20)
(0]

then from g(z,¢) =0, z€ C and from (3.5) it follows
@ (2,6) =0, z2eD A t€[0, T]
Proof: If (3.20) and (3.5) hold then by analogy whith already shown
Im[o’ (2,8)] =0, zeD and t€[0, T).

This proof is contimed from this point on as alreavy shown.

4. The existence of the solution
of boundary value problems

Let be the boundary C of the region D smooth enough [2], the function
o (2, t) on it however should be with regard to arc length s moreover of such
property which enables the use of Sherman method [2]. Further let us define

1 (o@D

P 5 = = d A

? (2, 1) 2m‘ v, C (4.1)
—Km(c,z) 70 (% 1)

2t) =- d 42

b (21 sz - : (4.2)

and Sh.rman’s operator
9K, o (2 E)]—m(a,t)+—-—-Jm(l,t)dln§——+

2T Z

o (G, d 4.3

to e o (43)

C
Sherman’ equation for the function ® (2, £) for the first boundary-value problem
in simply connected region D a.sumes the form

$[— I, & (2, )] +z‘zReU

]

m(é’t)dﬁ}:f(z,t), z€C,0eD (4.4)

where it is still
Re[[f(z 1) ds) =0 (4.5)

In equations (4.4) and (4.5) the time ¢ appears only as a parameter. There-
fore all the proof for the existence of the solution (4.4) takes analogue way as in
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the classical case. The equation (4.4) has for each value of its right side exactly
one solution. The generalization on the multiplyconnected region and on the
infinite region can be done quite analogue as in the classical state with the only
difference that the former constants appearing in the logarithmic terms become
now functions of z.

When dealing with second boundary-value problem however Sherman’s
equation for a simply connected region D takes the form

SIKyw(z)]=KL2Mu+iv)=f(21t), 2eC (4.6)

In this equation K is now the operator from (2.16). The generalization on
multiply connected region takes again already known classical way. However the
examination of the existence of the solution o (z,t) does not take the same way.
In the first place when proving that the homogenous equation (4.6) for f (2, t) = 0,
z € C only the trivial solution ® (z,t) = 0, if the conditions of the theorem I
or II are satisfied. That means that the equation (4.6) having an arbitrary right
side has at most one solution. If a further condition on the operator K~! being
compact in the given interval [0, T] is added then for the equation (4.6) hold all
the Fredholms’ theorems. Then the Riesz theorem asures the existence of the
solution (2, ) for an arbitrary value of the right side.

5. Exemples for the Operators L and M

The following integral operator, which is throughly shown in [1] fulfills
all the properties (i)—(iv).

L) =fk] (t —E)fE(xy, ) dE (5.1)

where k1 () is a real function of the time ¢ only and at negative values of ¢ be-
comes zero. Now we can the upper equation put in the form

B = F (o5 -+ O By () j ki (t — E)FE (uy 3, E) A E (5.2)
(0]

and analogue
14

Mi(f) = f (95 + 0) B2 (&) + [kz t—EFE(yEdE  (53)

(0]

If k; (¢) and ks () are real, nonnegative and twice continously derivable and
if k2 (4 0) > 0 and k1 (+ 0) + k2 (4 0) > 0, then also M1 and (L; + Mp)?
take the forms (5.2) and (5.3) and so do all the other operators introduced so far.
The functions ki (z) and k: (r) being nonnegative we can make us of the theo-
rem I (or theorem IT). The integral operator being also compact on an arbitrary
given interval [0, 7] is seen that for such a pair of operators L; and M; holds
also the theory show already at the arbitrary given T.
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The operator [3]
La(f) =f (x5 + 0) ba [ ()] + J Rl () — p @10y, 8)dE (54
0

where W (¢) is continous and increesing function with two properties

lim w (£) = oo (5.6)

is now different from Li (f). Namely it has not the property of translation in-
variance except in che cases where p. (¢) is a linear function. However we can
transform it with regard to the new wariable to the form (5.2). If we write

e = {J-(f)Q f(x>y> L) = F(x3y9 U)
u=uE); fxy &) = F(x vy u) (5.7)
[0, 7] = [0, U]

we get
U

Lo (f) = Li(F) = F(x, 3, + 0) & (U) + f k1 (U — u) Fy (%3, u) du (5.8)
O

Hence all the allready shown theory also holds in this case for the opera-
tors Lo and Mz of the form (5.4).

Finally let it be mentioned that we can in the cese of operators (5.2) and
(5.3) successfully solve the second boundary-value problem also by the use of
Laplace transforms. Let us examine the transformation of the term Ko (z,0)!

Introducing £ (f (2)) = f(s) and considering (2.16) and [1] we get

By (s) + 3 ks (s)
K N _ — —_— &y S 5.9
LI[Ko(z1)] s 1 ke (o) ¢ (29) (5.9)
If we write

ki(s) 4+ 3k (s)

“B="gl raw G
then from (3.4) it follows
()85 + 59 (59 + () =81(s9) 2€C (5.11)
where it means
g1(29) =£[—2Mg))]=—2sk()g(z9)

The last equation is actually entirely analogue to the equation of the se-
cond boundary-value problem when given in classical state. It is obvious that,
for real and large values of s, because of nonnegativeness of ki (z) and k2 (2), al-

ways is % (1) > 1 too.
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A CONTRIBUTION TO THE APPLICATIONS OF COMPLEX
ANALYSIS IN SOLVING OF BOUNDARY VALUE PROBLEMS
OF PLANE LINEAR VISCOELASTOSTATICS

In this paper the general equations of the plane linear viscoelastostatics
are deduced. The elements of the stress and strain tensors are given by means
of a pair of analyric functions, which depend on the space variable z and time ¢,
the later appearing as a parameter. The definitions of two basic boundary-value
problems are given as well as the proofs of the uniqueness theorems. The exi-
stence of the solutions is prooved by the transformation of the problem to the
solution of Fredholm’s integral equation of the second order. When considering
the sccond boundary-value problem it is necessary to introduce additional con-
ditions of the operator K. Two examples of such operators are given, where the
shown theory is entirely fulfilled.

DOPRINOS K UPOTREBI KOMPLEKSNE ANALIZE PRI RESAVAN]JU
DOPRINOS K UPORABI KOMPLEKSNE ANALIZE
PRI RESAVANJU ROBNIH PROBLEMOV
RAVNINSKE LINEARNE VISKOELASTOSTATIKE

V tem sestavku so izvedene osnovne formule v linearni viskoelastostatiki.
Elementi deformacijskega in napetostnega tenzorja se izrazajo z dvema anali-
ticnima funkcijama krajevne spremenljivke z in Casa ¢, ki nastopa kot parameter.
Izvedeni sta definiciji osnovnih dveh robnih problemov in dokazana izreka o
enoli¢nosti resitve. Eksistenca reSitev je dokazana s prevedbo problema na rese-
vanje Fredholmove integralske enacbe drugega reda. Pri drugem robnem problemu
je treba za operator K upostevati dodatne zahteve. Dana sta dva zgleda opera-
torjev, kjer izvedena teorija v celoti velja.
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