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1. Introduction

In the previous papers [1, 2, 3] we have analysied the structure of the
constitutive laws for the materials which are in the conditions of finite elastic-
-plastic deformation. Various aspects of the analysis were considered, such as
isothermal [1] and non-isothermal behaviour [2], or the inclusion of plastic
anisotropy, i. e. the Bauschinger effect and anisotropic h-rdening in the ana-
lysis [3]. This work i oriented toward the formulation of the variational prin-
ciple for velocity fields which is valid for finite deformation, and to incor-
poration of the established constitutive laws into its structure. At present we
shall consider the isotropic, non-isothermal case and derive the corresponding
exspression for the rate-potential function [7] which can be used in the finite
element formulations of elastic-plastic boundary-value problems [5, 6].

2. Constitutive law

We have shown in [1] in a kinematically rigorous manner that materials
which deform in the elastic-plastic regime obey the following constitutive laws:

o

A [7] (2.1}

I
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where = is the Kirchhoff stress tensor, D is the wvelocity strain, (°) is the
Jaumann derivative with respect to total spin W, and A and L are the forth
order operators which depend on the current state of material, i. e. stress
and other quantities which define the state. The symbol [ ] is used for the
inner product or trace, such that, for example (2.2), means

Tij = Ligkr D (2.3)
It is shown in [4] that tensors A and £ possess the symmetry 'properties of
the type:

£i:iicl E= ‘:jﬂct = Ei}‘lk
(2.4)
Limr = Srns

which are important in the subsequent derivation of rate potential function
and which lead to symmetry of the elastic-plastic stiffness matrix in the finite
element formulations of the appropriate boundary-value problems [5, 6].
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The special attention of the general theory deserves the case of finite
elastic-plastic deformation with small elastic component of strain, because it
includes almost all common technological processes involving plastic deforma-
tion. In this case it is easy to show (for details, see [4] that tensor A has
the representation
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where A and p are the Lamé lasticity constants, f =g (1) —c¢ =0 is the
yield function, g being an isotropic scalar function of stress = (in the case of
isotropic hardening), while ¢ and 4 are the scalar functions of history of
plastic deformation. The constitutive law (2.1) therefore reads
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To get the explicit representation of the L tensor in (2.2), we need to
invert (2.6). The inversion is rather instructive. First we rewrite (2.6) in

the form

| A & 1 0 of o
Dy=—— Ty~~~ Tnn 8” +— __f— —f' Tkl (2.7)
Zp. 2{.1. (3)\.+2y.) h 0 Tij Tkl
Contraction i = gives
1 : 1 0 of .
nn = . b / / ki (2.8)
3 + 2}1. h o Tan 0 Tkl

But plastic yielding is not influenced by a hydrostatic component of stress [8],
i. e. of/0t,, =0, and (2.8) gives

T = 3\ + 2p) Dy (2.9)
so ‘that (2.7) becomes
1 s I of of ,
Dy == 2y ———Dpp +08 +— — . 2.10
i 2 Tij nn ij h 0ty 0 Tke ( )

1 0
of o _ L B, 2.11)

0 Tyj

1 1
..___|__
2[.1. h drmafm

which substituted into (2.10) leads, after solving for Ty 1O
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Relation (2.13) is the explicit representation of the constitutive law (2.2) for
the case of isotropic, isothermal finite elastic-plastic deformation with small

elastic component of strain.

3. Variational Principle

Consider the virgin configuration of the body $,, the configuration 3,
at time ¢, and the configuration %, at time z > ¢ (Fig 3.1).

N
57

Fig. 3.1

Introduce the deformation gradients corresponding to the motions from
B, to B, and from B, to B, as F (r) and F (), respectively. Then the

relative deformation gradient F, (2) corresponding to the motion from $, to B,
is defined by

F(z) = F,(2) F (o). 3.1)

Let the Cauchy stress in the configuration $,be 7. Introduce the first Piola-
-Kirchhoff stress tensor T, betwen configurations 8, — B, by

dP =N, T)dS, (3.2)

where dP is the force action on element dS, and N, is normal to d S,
Then due to Nanson’s relation [9]

NdS; = NF' @45, (33)
z
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we have

F= pia (3.4)

We now introduce several definitions and theorems which correspond to simi-
lar and well known ones, such as are given, for example in [9].

Definition 1. — When the rates of external (body and surface) forces are
prescribed as acting on a deformable body, a statically admissible stress rate
field is defined a one satisfying the rate equilibrium cquations

Ve T+ p b =0 (3.5)
in the interior of the body, and the boundary conditions

NTv=

~

(3.6)

at the boundary where the rate of boundary tractions are prescribed. In (3.5)
and (3.6), the derivative’’ - ** designates the material derivative d/dz, b is the
body force per unit mass (so that p, & is the body force per unit volume of
the configuration $,), 7, is the (pseudo—) traction giving the force acting on
the area in the configuration B,, per unit area in the configuration %$,.

Definition 2. — A kinematically admissible velocity dustribution is one
which satisfies any prescribed velocity boundary condition and which possesses
continuous first partial derivatives in the interior of the body.

Definiticn 3. — A virtual velocity field is an additional kincmatically
admissible velocity distribution applied on an equilibrium configuration. As
such, it vanishes where the velocitiecs are prescribed and it has continuous
first partial derivatives in the interior of the body.

Definition 4. — The virtual power & P of the rate of the external

surface tractions ¢, and body forces [, = g, b, if these rates are assumed to
remain unchanged during the application of the virtual velocities 3 7, is

Sﬂ‘zf;lszdst+f13p_dvt (3.7)

where S, and V, are the surface and volume in the configuration 5,.

Theorem 1. — If the stress rate field is statically admissible the virtual
power on any virtual velocity field is
. 08y
3P—= | 7L - I 4 (3.8)
f R "

Vi
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. . . . 1
where X are the coordinates in the configuration $;, Ty are the components
of T,, and 8 v; are the components of the virtual velocity f ield 8 ©.

Theorem 2. (The Key theorem). — If
J‘T}i—a—(s‘v—i)ch=fii1SvidSt—i—fj‘i‘sz-th (3.9)
v,

00Xy
Ve Sy

for a certain assumed stress rate field 7, and for every virtual velocity field
3 v, then the stress rate field is statically admisible, i.e. it satisfies the equi-
librium equations. (3.5) and the boundary conditions (3.6).

We named Theorem 2 the Key theorem because it derectly leads to the
variational principle

3I=0 (3.10)
with
I=fEdV¢—fifvidS,—-Jf}vidV, (3.11)
v, 8, Vi
where E is the rate potential function [7], such that

0E
3 ( 0 Vg )’
0 Xy
as is seen by comparing (3.9) with (3.10) and (3.11). We see, therefore, that

(3.12) necessarilly follows from the Theorem 2 and need not to be assumed,
as is done in [7].

7= (3.12)

The variational integral (3.11) will directly serve our purposes. We need
only consider the configuration $, to be the current configuration, so that
integrals in (3.11) are written with respect to the known geometry, and to
take z — . Then, the variational principle (3.10) with variational integral
(3.11), gives the rate equilibrium equations and boundary conditions at the
current time.

In what follows we shall derive the explicit expression for the rate po-
tential E. In particular, we shall show that, for time independent plasticity,
E is a homogeneous function of degree two in the velocity gradients.

To derive the form of E and variational integral (3.11), we start from
(3.9) by substituting into it the established constitutive law (2.13), i.e. by

7 Mehanika 11
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experssing 77, in terms of the Kirchhoff stress 7. In that connection, we in-
troduce the Kirchhoff stress corresponding to B, — B, as

T=Fe, (3.13)
Pz

so that for z = ¢ it coincides with the Cauchy stress 7. The first Piola-
-Kirchhoff stress (3.4) now crn be written as

T,=F'(2)*%. (3.14)
Differentiating with respect to z and evaluating at z = 1, gives
Py=—LT+% (3.15)

Further, we recall the Kirchoff stress coresponding to B, — B,

v = 2o (3.16)
Pz

which in view of (3.13) can be written as

r=Fo 3 (3.17)

Pt
Differentiation with respect to z gives

r=1F (3.18)

This is valid for any z > and, in particular, it is valid at z — r. Hence,
substitution in (3.15) gives

==L T 85 (3.19)
Po
or, due to (3.16),‘
7, =F(—Lta3) (3.20)

Po

But, from the constitutive law (2.2), we have

T =Wt — W ¥L[D], (3.21)
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and (3.20) becomes

T D W LI (3.22)
Po

Since W = L — D, (3.22) can be rewritten as
1=t (xD—Dx— <L +L[D). (3.23)
Po
The relation (3.23) is the desired expression for 7. Its substitution into the

integrand of the left integral in (3.9) gives after some manipulation

. 0(@v
6. 0080 _ Gp . 3D3Pla (5208 DG - B3 ey B0

0 XJ Po Po
i
: ov 1 .o
o s( ‘ )=s[~- P e DaaDytie Pty (— 2 Dy Dy + Liy LM)]. (3.25)
0Xy 2 g 2 po

But the geometry V, remains fixed during the application of variation 3 and
the integral on the left hand side of (3.9) becomes

N 0 1
fT.n 3( = )d V= Sf — PO s Dy Dy + 73 (— 2D Dyy
OXJ 2 Po
Vi

Ve
T Lk,)]} v, (3.26)

Therefore, the rate potential function E in (3.11) has the representation

E =-— 2 [£4mn Dma Dy -+ 745 (— 2Dix Dy + Lig L)) (3.27)

5
2 po
which is seen to be a quadratic in velocity gradients L

Whit E given by (3.27), variational integral (3.11) becomes precisely de-
fined and it is ready for the use in numerical treatments of boundary value

problems [6].

The explicit representation of Ly, in the case of finite elastic-plastic
deformation with small elastic component of strain is given m (2.13)
from which

0\ I or "oy
Comn = 20 |Sm 8jn + = Sma 3y — J i
iymn - [im in 2u mn ij h +_C)L of 9 Tij O Tmn S

2p 07 07T

7
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This, together with (3.27) and (3.11), is the basis for the accurate finite ele-
ment analysis of metal forming processes, such a extrusion or drawing, as
discussed in [5].
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FORMULATION VARIATIONELLE EN ANALYSE DE DEFORMATIOS
FINIES ELASTIQUES — PLASTYQUES

Cette communibation est concernée par 1’établissement d’une fonction
de changement de potentiel et de I’intégrale variationylle correspondante pour
la plattité isothermale, isotropique et indépendante du temps.

VARIJACIONA FORMULACIJA U ANALIZI KONACNE
ELASTO-PLASTICNE DEFORMACIJE

U cilju odredivanja istorije raspodjele naponskog i deformacionog stanja
u procesu elasto-plasticne deformacije, neophodno je izvrsiti integraciju po
vremenu tokom Ccitavog procesa deformacije. Ovo se moZe ostvariti nakon for-
mulisanja pogodnog varijacionog principa koji vaZi u uslovima kona¢nih defor-
macija, a u koji je ugraden konstitutivni zakon inkrementalnog tipa za elasto-
-plastinu deformaciju. Metod kona¢nih elemenata je onda najpogodniji za od-
redivanje numerickog rjeSenja konkretnih problema.

Imajuci navedeno u vidu, u ovom radu je izvedena potencijalna funkcija
sa Korespondentnim varijacionim integralom za slucaj izotermitke i izotropne,
vremenski nezavisne elasto-plasticne deformacije.
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