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DYNAMIC STABILITY OF ELASTIC CURVED BEAMS

V. B. Lazic

(Received March 19, 1985)

A curved beam of variable cross sections whose radius of the curvature
is positive lies in a plane containing a cross sectional principal axis of iner-
tia. The boundary conditions are homogeneous. A linear elastic material of the
beam is supposed.

The usual assumptions of the second order theory as well as the tech-
nical theory of bending are accepted. The influence of the axial forces on the
beam deformation is neglected.

The curved beam is subjected toa distributed loading lying in the plane
of the beam and varying alog the beam axis. The resultant of the external
forces acting on any given element of the beam does not change in magnitude
with the deformation of this element. We consider that kind of the external
load which turns with the beam element during the deformation (the hydro-
statical kind of the external load).

The external load consists of distributed forces in the normal (A = u)
and the tangential (A = o) directions with respect to the beam axis; the first
is positive toward the center of the curvature and the second in the direction
of the increasing arc coordinate s. Each of them has two components: time-
independent p;, (s) and time-dependent = (z) py, (s) the magnitudes of the last
being periodic functions of time:

m(+ T) =m (). (1)
Introdcing two load parameters « and 3 we get:

(s 1) =apr () + B @y () r=u o (2)

Since the beam is considered as a ,,flexibile system‘ (the equilibrium

conditions are applied to the deformated shape) the influence of the deforma-
tion on equilibrium conditions is introduced as an additional load [2]:

A gy (s 2) = [aNg G)+Bn () N, (&) (85 2),

3)
Agy(ss £) =[a Top(s) + B (s) Toy (] (s5 2)s
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where N, (7T,,) and N, (T,,) are the axial (shear) forces due to the external
load gy, and g5, (A = u, ), respectively, referring fto the curved beam as a
»rigid system’’ (the equilibrium conditions are applied to the non-deformated
shape ); % (s, £) is the unknown function (see Appendix). The inertia for-
ces are:

dug (5, ©) = —mcs>%s—)== —m(als, o,
2 (4)
Got (5> 1) = —m(s)"—~’;(j;—")=—m(s>acs, 0;

u(s, t) and v (s, 1) being the unknown functions, too.

Using the well-known procedure [1] we establish two integral-differential
equations where appears the functions u(s, ¢) and v (s, 1):

uls, © = f Kyu (5 8) 0y (5 )dz + f R 5 900, 8 il
L 5
+ [K.uu (s, 2) A gy, (2, t)dz —I—me, (5,2)A g, (2 t)dz —
E L
- f Ky (s, 2) m(2)di(z2, t) dz ——f Ky, (s 2)m(2) v (2, 1) dz, (5)
L L
oS, £) = f Ky (5:2) g4 (2, 2) dz + f Koy (55 2), g, (2, &) dz +
5 £
g vau (s, 2) A gy (25 1) dz + vav (s; 2) A gy (2 1) dz —
2 L

-— f Ky (s, 2)m(2)ii (2, 1) dz — f Ky (s; 2) m (2) v (2, 1) dz, (6)
L L

where it is necessary to introduce the expressions for the external load Eq. (2)
and additional load Eq. (3); Ky, (s52) (A, u = u, v) being the corresponding
influence functions (see Appendix).

Egs. (5) and (6) are inter-dependent because the known relation A. 1
exists 'so that in further text we can dwell only on one of them. We will
etain Eq. (5) .
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Applying the well-known method for solving Eq. (5) we introduce the
individual functions U, (s) and V;(s) (j = 1, 2,...) of the matrix kernel (A. 3)
corresponding to the equations of vibrations of the curved beam [1].,These
functions are orthonormal:

1 for =~k

.[mmungﬂg4Vﬂﬂm@H¢:&m&p#Oﬁ”j#k (7)
L

and the influence functions K,, (s, 2) and K,, (s, 2) in Eq. (5) can be expan-
ded in a series absolutely and uniformly convergent with respect to the argu-
ments s and 2:

Ky (55 g) = z _lfz UJ (s) Uj (2)y Kyy (s, 2) = Z ;1; Uj (s) Vj (=), (8)

i W j Wy

w? (j = 1,2,...) being the individual values of the matrix kernel (A. 3), i.e.
angular natural frequencies of the curved beam. The unknown functions
u(s, 7) and v (s, £) can bc also expanded in a series uniformly converging
with the timce-dependent coefficients:

() =S HOUE vin=3f0V;0. 9)

On the basis of Egs. (A. 1) and (A. 2) the function x(s,r) can be re-
presented in the shape of the series:

(s, 8) = 2 f;(8) %5 (5); (10)

where %, (s) are expressed through functions Uj (s) and V;(s) in the follo-
wing way:

ol V_J'(_s)

i ds r (s)

iwi%@_

}Jj;:]: 20009, (1)

Introduction Egs. (9), (8), (2), (3) and (11) in (5) and then Eq. (7), we
obtain the following expression for the ;** (j = 1,2,...) differential equation
with respect to the unknown function f; (¢):

*l'z"fj(t) + £ () — @ kz age fis (1) — B () 3, by fic (1) =
Wy k

=agy+pr@®h Jj=12,..., (12)

where the coefficients are as follows:




38 V. Lazié

o =5 [[UONLO+ V0 L@l @ds k=12, (3
€L

bjk :&i_z f[Uj NG () + Vi () Toy (D ()ds j, B=1,2,..., (14)
L

g = ;’?—fwj-cs)pm )+ V() Pro@ldss 1=1,2,..., (15)
L

h; = ;ljz f [U; (5) Py (5) + Vi (Dpu(slds, 71=1,2... . (16)
7

When we keep the finite number n of Eq. (12) we may represent them
in the matrix form:

Cf +[E—A—PBr@Blf=ag+Pr()h, (17)

where the following matrices:

| 87 |
A —— ”aij”:ﬂ’ B == ”b_’”ﬂ””hnﬂ C — J!__J’L
o

(18)

nn

and the column vectors:

f= |f1: Tiis 5 -:fn]’ 8 = |g13 g2y + - o ,gnl' h = Ihls Ry « o :gnI’J (19)
are introduced.

It is known that the type of the matrix equation ot the dynamic sta-
bility dependsfon’the properties of the material. For the linear elastic mate-
rial the quation has the form given by Eq. (17). The shape of the beam,
the change of the mass law, as well as the cross section geometrical proper-
ties along the beam axis, the boundary conditions as well as the kind of the
external load (gravitational or hydrostatical) influence the elements of the ma-
trices A, B, C and the column vectors g and % only. In Ref [1] different
expressions for elements ay and by, of the matrices 4 and B were obtained
for the elastic curved beam subjected to the hidrostatical kind of the external

load (for pa, (s) =02, (5) = (5), A = u, v).
When we introduce:
B=0, o () =) 2=u, v,

(20)
u=u(s) v=9() N=N,(), T=TF,(s)
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we arrive at the problem of the static stability of the elastic curved beam,
N, (s) and T, (s) being the axial and the shear forces due to the external
load p (s) (A = u, v) for the beam as a ,rigid system’’.

After some transformations of Egs. (5) and (6) according to (A 1)
keeping in mind Eq. (20), we get:

() —a f (Ko (5 2) Ny (&) + Koy (5 2) To (2)] % (3) dz = 9 (5), (21)
!

where the influence functions K (s,2) (A =u, v) are determined by Eq.
(A. 4) and:

S f R (o ) i ) - Ko ) (3] i, @
L

representing the rotation of the cross sectional plane of the beam as a ,,rigid
system* due to the external load.

When we differentiate Eq. (21) with respect to the argument s and use
(A. 6) and (A. 5) we arrive at the well-known integral equation of the static
stability of the elastic curved beam subjected to the hidrostatical kind of the
external load [2]:

- No (2) T, (2)
M — M, (5. 2)———- | M,(s, o B dz = M., (5),
(s “f [ u (5 2) ) (s; 2) » (z)] (2) (s) (23)

L

where M, (s, 2) (A = u, v) are the influence functions defined by Eq. (A. 6);
M, (s) is the bending moment of the curved beam as a ,rigid system’’ due
to the external load «p; (s) (A = u, ).

The equation of the static stability of the elastic curved beam (23) re-
ferring to the hydrostatical kind of external load cannot be derived as a spe-
cial case from the corresponding equations of dynamic stability, formulated in
the mentioned Ref. [1].

APPENDIX
The following symbols are used in this paper:
5,2 coordinate along the beam axis
e time

u(s, ©) deflection directed toward the normal of the beam axis, positive to-
ward the center of the curvature
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vis L)

?(s0)
% (s, 0)
N
"

M

E

J (s)
r (s)
u (s)

deflection direct=d toward the tangent of the beam axis, positive to-
ward the increasing arc coordinate s

rotation of the cross sectional plane

change in the curvature of the beam axis

axial force, positive when exerting a pressure on the element
shear force, positive when turning the element clockwise

bending moment, positive when the lower fibres of the element are
stretched

Young’s modulus

centroidal moment of inertia of the cross section
mass

radius of the curvature

Kyu(s, 2) influence function for the generalized displacement (A = u deflection

in the normal direction; A = v deflection in the tangential direction:
A = ¢ rotation of the cross sectional plane) of point s due to the
unit force (A = u directed toward the normal of the beam axis;
A = v directed toward the tangent of the beam axis) at point z

M, (s, 2) influence function for the bending moment at point 5, due to

the unit force (A =u directed toward the normal of the beam
axis; A = v directed toward the tangent of the beam axis) at point 2

The following well-known expressions are used in this paper:

__Ou(s2) v(s,2)
¢ (s 1) = 5 4 e (A. 1)
x(s,z)x-ms (A.2)

0s
“Vm (s)m (=) Ky, (s 3)”2 2 A o= u,0; (A.3)
Ko (s, 2) = I Kia &, 2) =+ Ko Gs, z), A=u,v; (A. 4)
0s r (s)

M (s) = EJ(s)x (s); (A. 5)
M(sx) = — BI (922268, _ . (A. 6)

0s
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TMHAMUWYECKASL YCTOMUHBOCTD VIIPYITUX KPHU BOJIMHEMHBIX
CTEPXHEH

IIIs1 yIpYruX KPUBOJIMHEHHBIX CTEPIKHEH BBIBEICHO MATPHHUHOC ypaBHe-
HMe AMHAMWYECKOH YCTOHuMBOCTH. BHelHas Harpyska KOTOpad JEXHT B 110~
CKOCTH K KOTOPOH TPMHA/UIEXKUTh OCh KPHMBOJMHCHHOIO CTEPXKHA IOBOPOTH-
BaeTCcs, COCTABIISISI C M30THYTOH OCBIO CTEPIKHA nepBoEavabHblil yros. Ilomy-
yenple K03((UIMEHTH MaTPHUHOIO YPaBHEHMS PpasjiMuHbIE OT TEX KOTOpbIE
HM3BeCTHBI B JuTeparype. Kak uacTHBIN Ciyyail MHTErpO — muddepeHIMaIbHbIX
ypaBHEHMH JMHAMMYCCKOI YCTOMUMBOCTH IIOJIYUEHO MHTErpapHoe YpaBHCHHE
CTATMUECKOH YCTOHUMBOCTH KPHBOJMHEIHBIX CTepIKHEH KOTOpOe M3BECTHO B
JIHuTEparype.
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DINAMICKA STABILNOST KRIVIH STAPOVA
OD ELASTICNOG MATERIJALA

Za kriv $tap od elasticnog materijala izvedena je matri¢na jednadina di-
namicke stabilnosti. Spoljno opterecenje, koje lezi u ravni ose Stapa, obrée se
prilikom deformacije nosaca zadrzavajuéi prema njemu prvobitni ugao.

Dobijeni su izrazi za koef icijente matri¢ne jednadine koji se razlikuju od
izraza poznatih u literaturi. Kao specijalan sludaj integro-diferencijalnih jedna-
Cina dinamic¢ke stabilnosti dobijena je, poznata u literaturi, integralna jedna-
Cina staticke stabilnosti krivog Stapa koji je izlozen delovanju hidrostati¢ke
vrste spoljnog optereéenja.
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