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1. Introduction

There is a considerable research about methods of solution of nonlinear
equations with a small parameter due to their importance for theoretical
physics and mechanics (especially for vibration theory). Nevertheless, some
important questinos in the application of these methods still have not been
answered and one of them is their applicability on infinite time interval
However, for an examination of stability of motion of a system it is of fun-
damental importence to see is it possible to extend time interval of a solution
into infinity and to estimate discrepancy between a solution and the desired
motion of the system.

More precisely, the task is in the folowing. A seeking to find a solution
by the ,,small parameter method’’ consists in an improvement of the funda-
mental solution which is obtained from the original when the small parame-
ter vanishes. The procedure is correct only if in the vicinity of the funda-
mental solution there exsists exact solution of the system. If exact solution is
continuously dependent on inital conditons then applicabliity conditions of the
small parameter method are known [5] but obtained solution holds on a finite
time interval. An extension of the upper bound of this interval to the infinity
may be considered as a kind of stability problem. However, this stability is
not covered by Liapounov definition since undisturbed motion (basic solution)
and disturbed motion are not solutions of same equation. Still, there exists a
special kind of stability defined by M. Bertolino [2] called ,,almost-stability of
a function’’ which is not necessarily a solution of the equation. As far as we
know, a criterion for this stability is not known until now.

In this paper we propose a procedure for examanition of Bertolino stability
for the case when the disturbed motion is an exact solution of the equation
with a small parameter. For this purpose the averaging method theoretically
founded by Krilov, Bogoljubov and Mitropolski [5, 6] has been used without
additional explanations. Details and full explanalation of these calculations are
explicitly given in [5, 6].
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2. Application of Bertolino stability on systems with a small parameter

Consider a system of differential equations
=A@ x+f(@)+eP( x) (1)

where are

(R =(—o0, ), Rt =[0, o0)):

x € R® — n-dimensional state vector,

A (1) — a square matrix of order » with elements a;;: R.— R,

1 € Rt = g scalar variable (usually chosen as time),

f:Rt— R" — g vector function of the scalar variable,

D : R+ v R"— R — another vector function of the scalar variable and
the state vector,

¢ — a small scalar parameter

» — the time derivative of the state vector.

In the sequel we assume that the vectorial equation (1) fulfils existence
as well as uniqueness conditions. ' it

The systems (1) may represent, for instance, differential equations o
motion of a mechanical system in the vicinity of a stationary motion or about
an equilibrium position. Therefore, its analysis should be interesting for an
application in mechanics or elsewhere. Of course, there exists a whole sequ-
ence of other procsses which can be adequately described by the vectorial

equation (1).
In the linear approximation (1) simplifies into

x=A@x+1@®) )

whose Cauchy’s solution satisfying the initial condition z, = 0, x,(0) = x,
amounts to . ‘ .

2T == T (B f X () X1 () f () d~ 3
0 : "L

where X (¢) is the normalized fundamental matrix of the homogeneous equation
o : =A% (4)
‘related to H2). '

Let
x = x( ) ' IR
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be the solution of the differential equation (1) which satisfies the inital condi-
tion ¢, = 0, x (0) = x,. Taking into account smallness of ¢, it is reasonable to
state the question how to estimate properly the discrepancy between the exact
solution (5) and the function (3) on the real positive axis R*. This question
becomes of essential value if the method of small parameter should be applied
in order to obtain the approximate solution of (1). Namely, by this method
an improvement of the solution (3) is performed and this procedure is correct
only if in the proximaty of (3) there exists the solution (4) of (1). ThLus, the
distance betwen (3) and (5) must be estimated. The task can be extended in
the following way. Let

x=x(t xo) = x (1) 6)

be an arbitrary motion of the system (1) correspoding to a new initial con-
dition % (0) = x, where |}x, — %,|| is small (in other words x, belongs to the
vicinity of x,). Then the extended task is to establish an estimation of dis-
crepancy between (6) and (3) on R*. As a special case, if X, = x, the former
problem of discrepancy between (3) and (5) on R* is obtained. Since the
difference betwen x, and x may be understood as a disturbance of initial
conditions a comparison of (3) and (6) on R* is a stability problem. However,
this is not a Liapounov stability problem because the function (3) is not a
solution of (1). Nevertheless, a proper kind of stability correspoding to the
stated extended problem can be definied and a suitable definition is found
in [2]. Definition (M. Bertolino). A function di{t)= 0% te Rt

is an almost stable approximate solution of the equation
x = F(t x), (a)

xeR", F:R+X R"® — R" if to any arbitrary ez=il>0

(I —fixed number) there corresponds & (e, ) >0 such that for any
solution x (z) of (@) for which

|2 (0) — ¢ (0)]| < 8 'b)
holds, the inequality
lx(@ —d @I < e (©)

is satisfied for all ¢ = 0.

Acoording to this definitios the stated problem maj be reformulated as:
to examine conditions under which the function (3) is an almost stable appro-
iximate solution of the differential equation (1).

If as a motion (3) is taken and the disturbance is denoted by & (£eR™)
then the disturbed motion (denoted by x) is given by

x()=X@x + f XOX1(0)f(x)d~ + & (). @)
0

2 Mehanika 11
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Since the perturbed motion has to fulfil (1) replacement of (7) into (1) gives
the differential equation for disturbance

E=A@E+<eSE D (8)

where
S, &) = Cb[t,X(t)xo —i-[ XOX1()f(vdr + E(t)].
0

It is worth noting that in general a vanishing of disturbance, £ = 0, is not a
solution of (8). In this way the term S(z, £) in (8) acts as a function of
permanent perturbations.

However, the stability in the sense of Bertolino’s definition is not the same
as the stability in the presence of permanent perturbations (cf [7]. First, an
almost stable approximate solution allows that there exists its vicinity |[§|| < /
without disturbed motions (ie. that it is not possible to approach an undistur-
bed motion by means of some disturbed motion in arbitrary way) and this is
not the case in the definition of a stable solution in the presence of perma-
nent perturbations. On the other hand, in order to have a motion stable in
the presence of permanent perturbations it is assumed that for ||| < & the
absolute value of exication ||S (z, £)|| is small enough for all ¢ and this is not
fulfilled in our case.

Now, in order to solve the above stated problem, let us find an abi-
trary solution of the equation (8). Fcr this purpose we introduce a new vari-
able s € R® by the substitution

E=X(0s %)

Differentiating this equality with respect to time and taking into account
(cf. (3), (4), (8) and (9) for f = 0) the relation

X@)=4@0X(@) (10)
(8) is tranformed into the differential equation
s =gX 18 X{)s) (11)

for s(f). It is a straightforward matter to see that for ¢ =0 the solution
s=c=const follows so that in this case X (z) ¢ represents the solution of the
homogeneous part of the equation (2). According to the averaging method
(cf. [5, 6]) a solution of (11) could be seeked in the form

s=06-+ceu(e; t) (12)
where the variable o obeys the following differential equation

6 =¢8,(c) +eS,(c) + ... (13)
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while functions u, S,, S, ... should be additionally determined. If we consi-
der only the first approximation of (13), then (11) and (12) will give

o =¢8;(0) (14)
where

T
S, (o) = lim .%fx—l(z) D[ X(@)olde
T-> 0
0

and integration is performed only on the explicit ¢. A solution
6 =20 €) (15)
of (14) represents an approXimation of the correspoding exact solution of (11)

being correct up to the order of ¢ on the interval [0, 1/¢] (cf. [5, 6]).

The following question is now in order: is the approximation (15) valid
also on the whole interval R*. Paying attention to the fact that (11) may be
approximately written in the form

¢ =¢c8,(c) + 0(e)

it is clear that by rejecting the term 0 (¢) a solution of the reduced equation
is obtained with an error which can infinitely increase with time (when
¢t — + o). Therefore, it is neccsary to examine conditions on the equation
(11) in order to keep the error in the prescribed boundaries.

Suppose that:
1. the equation (14) has an asymptotically stable solution ¢ = 0,

2. the function

T f X1 () S X(D)sl— S,9) d= (16)
0

is continuous and uniformly bounded on R*

as well as its derivatives with respect to o and ¢.

Now, let s(z, €) be a solution of (11). Then, replacing it into (12) and
differentiating so obtained equality in the sense of the equation (11) we obtain
ou

ot .

sX‘l(t)S[t,X(t)s]=d'+s§—uo‘—l—e
c

If in the above equation u (which was undetermined until now) is replaced
by (16), we get

é=eSl(c)—sg——glsSl(cr)+0(c)|' (18)

A
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Due to the assumptions included in the theorem it is easy to show that ‘or
arbitrary A > 0 there exists always 8§ > 0 such that

a u

[ Sy (o) + 0(6)]‘

if ||o]| < 3. Hence, (18) is a differential equation of a perturbed motion (whith
respect to ¢ == 0) in the presence of permanent small perturbation

A (G, 1, €) = gg [c S, (6) + 0 (). (19)

It is known (cf. [7]) that the asymptotically stable solution & = 0 of
the autonomous system (14) is stable also in the presence of permanent per-
turbation (19). Consequently, it assumptions 1. and 2. are valid, the solution
of (14) will aproximate the correspoding solution of (11) with accuracy to the
order ¢ on the whole R*.

Furthermore, it is easy to see that from the stability of the solution
s = 0 of the equation (11) follows the stability of the function (3) in the
sens of Bertonilo’s definition under the condition that X () is a uniformly
bounded matrix on R*.

3. Conclusion

By means of the procedure presented in the paper conditions under
which the function (3) can be almost stable approximate solution of the system
(1) with a small parameter are determined. If these conditions are fulfilled
then an approximate solution on R* may be determined by the small para-
meter method. Stability problem of instationary nonlinear systems is very in-
teresting for theory as well as for practice. Commonly used method for stabi-
lity examination by means of linearized system in the case of instationary
systems demands a special caution. Namely, for nonlinear systems as a pecu-
liarity appear nonlinear resonance modes. By linearization trace of these reso-
nances disappears and cannot be detected. It is known that for nonlinear sys-
tems also a phenomenon known as ’’spatial instability’” could appear [8, 9]
and cannot by analized by means of the linearized model.

Results of this paper have been used for conditions of spatial stability
of a car as a multidegree-of-freedom system. These conditions are used for an
optimization of some geometric and dynamic characteristics of the conside-
red car.

Naturally, it is clear that the proposed method may be used for estima-
tion of stability of other mechanical and nonmechanical systems described by
ifferential equations (1).
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SUR LA STABILITE DES SOLUTIONS APPROXIMATIVES
D’UNE EQUATION A PETIT PARAMETRE

On considére un systeme dynamique général non autonome non linéaire
a pctit parameétre. Ce systeme peut, par exemple, représenter les équations dif-
férentalles du mouvement d’un systéme dynamique au voisinage du mouve-
ment stationnaire ou de 1’équilibre.

Outre la solution exacte on introduit les solutions du systeme linéarisé
et quasilinéarisé, dans ce dernicr cas elles ont la forme de séries potetielles
du petit paramétre. Dans la définition clasique de la stabilit¢é de Liapounov
la perturbation représente des solutions pour différentes conditions initiales.
Cette définition n’est pas appropriée pour I’analyse de la différence entre les
solutions exactes et approchées lors de la résolution approximative du prob-
leme du mouvement des systémes dynamipues réels. C’est pourquoi on ap-
plique ici la généralisation 2 de Bertolino de la définition de Liapounov aux
différentes solutions conditions initiales. Les auteurs ne possident pas d’in-
formations quant a D’application de la définition de Bertolino ou probleme de
la stabilité des systémes dynamiques.

Les conditions suffisantes pour la stabilité d’un systeme au sens de la
définition de Bertolino. ont été formalées.
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O STABILNOSTI PRIBLIZNIH RESENJA JEDNACINE
SA MALIM PARAMETROM

U radu se posmatra op$ti dinamicki neautonomni nelinearni sistem sa
malim parametrom. Ovakav sistem moze, na primer, da reprezentuje diferenci-
jalne jednacine kretanja nekog mehani¢kog sistema u okolini stacionarnog kre-
tanja ili ravnoteZe.

Pored ta¢nog resenja uvode se i reSenje linearizovanog kao i kvazilinea-
rizovanog sistema pri ¢emu se reSenje kvazilinearizovanog sistema daje u obliku
stepenog reda po malom parometru. U klasi¢noj Ljapunovljevoj definiciji sta-
bilnosti poremecaj predstavlja razliku istog resenja pri razliitim pocetnim us-
lovima. Ova definicija je nepodesna za ocenu razliCitosti tatnog i pribliznog
reSenja pri priblizZnom re$avanju problema kretanja realnih dinamickih sistema.
Zbog toga se u radu Kkoristi Bertolinova [2] generalizacija Ljapunovljeve defi-
nicije na razliCita reSenja i razliCite pocetne uslove. Koliko je autorima poz-
nato Bertolinova definicija nije dosad primenjivana na problem ispitivanja sta-
bilnosti dinamickih sistema.

U radu su definisani dovolni uslovi za stabilnost sistema u smislu Ber-
tolinove definicije.

Razvijena metoda se veoma uspe$no primenjuje na ispitivanje stabilnosti
stacionarnog kretanja realnih mehanickih sistema kada ovo stacionarno kretanje
nije ta¢no re$enje diferencijalnih jednadina kretanja [9].
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