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1. Introduction

In the finite element method (FEM) the most common way of development
of finite elements is the application of some variational principles. The energy
in the element and the work of the external load represent a functional. The functio-
nal is expressed in terms of some nodal parametars. The variation of the functional
on those parametars yields equivalent nodal forces (deformarions) and finaly equa-
tions of equilibrium (compatibility).

However, in the process of the application of the variational principle it is
not allways clear what realy is going on. The essential mean'ng of the FEM can
not be easily seen. For instance, although the equations of equilibrium are com -
pletely satisfied, it is not clear why the final stresses along the intcrelement boun-
daries on the one side and the other side are not the same. It has been shown that
the main reason for that difference is the way of computation of the stresses [1].
The stresses which enter into the equations of equilibrium are computed in one
way and the final stresses in another way. The discrepancy between the stresses
computed in both ways can be very big. That is partiqulary true in the case of
refined elements, with high order deformation shape function. As a result of that
discrepancy the final stresses are bad and not allways reliable.

In the case of low order deformation shape function the stresses computed
by the application of the variational principle, which enter into the equations of
equilibrium, and the stresses computed from the deformation shape function are
the same, or the difference is very small. In such case the work of the internal
forces (potential energy), can be substituted by the work of the boundary forces.
A functional which contains boundary integrals only, for the first time was applied
in the development of a mixed rectangular plate bending element [2]. The idea
of introduction of boundary integrals only, as a new approach of development of
finite elements, was further developed and extended on other problems [3, 4].
The same idea was applied in the development of plane stress elements [5, 6],
and recently in the development of shell element. '

However, what are the requirements of the deformation shape function
(DShF) in order to be possible application of such one concept, in all those papers
were not given. Those requirements in short are described in this paper.
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In the direct method the problem is not necesserely considered as an ener-
getic one. The boundary stresses (deformations) are computed directly from the
deformation shape function and later on trasfered to the nodes. In that way com-
puted nodal forces (deformations) define the element matrix. The application
of the method will be ilustrated on the development of one dimensional element,
plate bending element, plane stress element an three dimensional element.

2. The deformation shape function

The requirements for the best DShF, which makes possible the application
of the direct method, will be analized on the plate bending problem. The diffren-
tial equation of this problem is as follows,

AAW =p|D (1)
where A is the operator A = 0%/0 x* + 0%/0 y°, W is normal deflection, p — ex-
ternal load and D — cilindrical stiffness of the plate. The variation of the energy

can be defined as follows [7]:
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where M,,, M,; and Q° are boundary normal moments, twisting moments and
shear forces respectively, multiplied by the corresponding deformations. If one
wancs this energy variation to give the same nodal forces as the boundary forces
give, the first term of the area integral should be equal to zero,

AAW =0 (3)
The DShF should satisfy this condition. In other words, the DShF should be

the solution of the homogenious differential equation. In that case the energy
variation (2) becomes,

SU=M, faSst+ans

ds_fQSSst—”Mde dy (4

This equation menas that the work of the internal forces (potential energy) is
substituted by the work of the boundary forces. Actually this equation distributes
the boundary forces to the corresponding nodes and in that way defines the equi-
valen nodal forces. The element developed on the base cf the energy variational
principle (4) and the element developed by application of the minimum potential
energy variational principle should be the same. It means that the boundary forces
computed by application of the minimum potential energy variational principle,



The Direct Method of Development of Finite Elements 133

which are present into the equations of equilibrium, will be the same as the boun-
dary forces computed from the DShF directly (as the final forces are computed).
Therefore, the stresses computed from two adjasent elements should be appro-
ximately the same.

However, in the case of refined elements, with high order DShF, there
will be contribution of the first term of Exp. 2 and the final nodal forces will not
correspond to the boundary forces. It means that the forces into the equations
will be computed in on: way and the final forces in another way. Therefore, alt-
hough the equations of equilibrium will be completely satisfied, the finaly com-
puted boundary forces will be bad, different from one and the other side of the
element boundaries. The reliability of the forces computed in that way is ques-
tionable.

As a conclusion, it seems that the best DShF is the one which satisfies the
homogenious equation of the problem. Later in the text of this paper will be shown
that some modifications in the DShF, which will give improved results, are possible.
Those modifications should provide quadratic distribution of the boundary forces.

3. One dimensional element

The solution of the homogenious differential equation of the beam problem
is the following third order polinomial,

W =a, + a,x + a; 5+ a® x§ (5) 4 —12
W, 0 W,
The 4 coefficients in this expression are s 29 =
easily expressed by the 4 nodal parame- i S

tars of the element (Fig. 1) and the follo-
wing expression for the deflections de-
rived,

Fig. 1 One Dimensional Beam Element
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By differentiation of this DShF the following boundary forces are derived,

2
Mx=—EId i
dx?
3
Qx=—EId w
dx?
6 EI 6 EI & EI -
M, = Myuo =W, — W, +01_.__.+gz_g_£I_
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The coefficients besides the unknown nodal parametars represent the stiffness
coefficients of the element matrix. They are the same as in the well known classical
slope — deflection method. As it is well known, the classical slope-deflection
method gives exact results. Thus, the element developed here, directly from the
deformation shape function, will give exact results also, regarless of the number
of subdivisions.

The exact results which the element gives are not eccidental, but they are
such because the DShF is a third order parabola and represents the solution of
the homogenious differential equation. The DShF can be considered as a function
which defines the influence lines of the boundary forces: the components asso-
ciated with W, define the influence lines for the shear forces O;, and the compo-
nents with @, — the influence lines for the moments M;. As it is well known, the
influence lines for a beam are third order polinomials. Thus, the DShF defines
the influence lines exactly. Therefore the element of Fig. 1 allways gives exact
results.

However, if the element is with 5 or more degrees of freedom (d.o.f.), the
DShF will be of fourth or higher order polinomial and will not represent the in-
fluence lines exactly. Therefore such one ,,refined” element will not give exact
results.

The deformation shape function can be considered as a virtual displacement
which satisfies the boundary conditions. By application of the principle of virtual
work in this case of one dimensional problem, with the DShF (4), the exact re-
sults are derived.

The consideration of the DShF as an approximate solution of the problem
is wrong and has missled to the development of refined elements. The equations
of equilibrium are writen for the nodes and the final results are valid for the nodes
only. Inside the element there is no solution. The DShF can represent an appro-
ximate solution inside the element, but better not.

4. Plate bending element

The governing differential equation of the plate bending problem was given
by EQ. 1. As was mentioned, in order to get same boundary forces as the DShF
gives directly, the DShF should satisfy the condition (3). The following DShF
satisfies that condition, :

W=a +ax+...+a,x*y + a,, xy? (7
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where the first 10 terms represent a full third order polinomial. With such DShF
it is possible to apply the variational principle (4) and the direct method of de-
velopment of FE.

The application of the direct method ¥
of development of FE will be ilustrated A —3W M. M
on the development of the simple recta- iy o i
ngular mixed element of Fig. 2. The un-
knowns (d.o.f.) of the element are the dis- b
placements W, and the bending moments
M, My; (second derivatives) at the no-
des. The DShF (7) expressed in terms of

a VR
those nodal parametars becomes, 1
x y  xy Fig. 2 Plate Bending 12 Degrees of Freedom
Ww=W, 1———__+._)+ Element
a b ab

X xy xy y xy — =
+ Wz(: o ;E) + W, - ;3 W‘(_b-__- —;b) + M fi + Mz S +

+B31;fs +Z‘-/fdzf4 +wa5 +A7Izyfe +I‘7fsllf7 +1\7wa3 (8)
where,

My =P W[ox2 My=09W/[y
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The functions f, — f, are simmilar to f, = f, and can be defined by analogy.
The element matrix can be defined as follows,

=l ] e

The matrix of the unknowns is as follows,

8w (B B B By W W



136 A. Poceski

The first row of the element matrix represents flexibility portion of the element
matrix, which defines the compatibility equations. The slopes from one side of
the interclement boundary have to be equal to the slopes of the other side and their
summ has to be equal to zero. Those slopes, in the standard FEM procedure com-
puted by variation of the moments, can be computed directly from the DShF.
For instance along the side 1—4 the following slopes are obtained,

Giu=(—=1+3B) W, Ja + (1 —y/b) W,/a + yW,/ab— yW,jab + (— 1 +

T 2/0) aMi[3 + (— 1 + y/b) ap, /6 — yapfy,[6 b — yaf,,/3 b + (by/3 a —

—¥*2a + y°[6 ab) My + (—by/3a + ¥*/2a— 37/ 6 ab) jfoy + (— by /6 a +
+ 216 ab) My + (by/6a — y°[6 ab) My

Now these rotations have to be concentrated at the nodes 1 and 4. Their distri-

bution is linear and therefore the equivalent nodal rotation, for instance at node
1, is obtained as follows,

b

glzf G (1 —y/b)dy =—W,b/3a + W,b/3a + W,b/6a— W, b/6a —

0
— Mz ab[9 — AL,ab[18 — pf,, ab[36 — Mz @b[18 + A1y B2/45 a —
— May b°/45 a — Moy T 53/360 a + 31, 7 b° /360 a (10)
The coefficiets besides W, in this equation define the submatrix F, and those
besides Af;, My — the submatrix F. Instead of the second derivatives M, and

My can be substituted the real bending moments, according to the following re-
lations,

_ 1
Ty = : (—vy M, + M,)
A D (1 — 3 ¥ ¥

The submatrix F can be subdivided as follows,

F=F,+AF
F0=|: Fox _“'Fox]
_""vFoy Foy
AF — [A i AFM]
1A F, A Fy
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The submatrix F, is the same as in the previously devcloped elements with inde-
pendent assumption of the moments and deflections [8, 9]. The expression (10)
defines the first row of that submatrix. By analogy can be defined all rows of he
matrix. The values of that submatrix are as follows,

CER S
I 4 2 1
PR R B = 4 2

Symm. 4

The submatrix A F appears as additional and it is due to the uncompatibility
of the rotations along the boundaries. Thus, the direct method of development
of finite elements applied here, authomatically takes into account the uncompa-
tibility. According to Exp. 10, the values of this submatrix are as follows,

g —8 —7 7

v b*la § beasd i
" 360D (1 —v?) L A
Sym. g
[ —8 8 7 —T |
3/
Y b*|a —8 —7 7|,
360 D (1 — v?) -8 B
| Sym —8 |
Pl R e
. alb —8 B 71
360D (1 —v?) afl el
Sym. —8
§ 7 ~7 =8
0 v alb § w8 wl?
360 D(1—v?) g oh
Sym 8

It is interesting to note that A F,, 7 A Ff. As a result of that Fj; 7= Fj;. It means
that the Maxwell’s rull in this case doesn’t hold completely. A simple explanation
of that unusual appearance is that the DShF (8) is not the real solution of the prob-
lem. That function should not give uncompatable deormations. Because of prac-
tical reasons, in the numerical analysis instead of A F,, and A F,, an average sub-
matrix (A F,, + A F,)/2 was used [10]. Such approximation should have some
effects when a and b are much different.

The submatrix F, can be detected from Exp. 10. The values of that sub-
matrix are as follows,
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Fk:[""m]
Fuy
—2 2 1 —1
E . QN 1
F, — —kb ;
B S 3 B
Sym. —2
—2 —1 1 2
a —2 2 1
B — b
T wl g
Sym. —2

The supmatrix K, represents stiffness submatrix. The portion of the DShF (8),
which is function of the deflections W,, defines a twisted surface. There are con-
stant twisting moments only, which give constant twisting moments at the boun-
daries and finaly concentated nodal forces, which are,

rwW D(1—v)

=2M. .= —2D(]—»
0, 2y ( )axay o

(W1_W2+ WS_WJ

This expression defines the first row of the submatrix K x The complete sub-
matrix is as follows,

—1 1 —1 1

K, = Bt = ) —1 1 —1
ab —1 1
Sym. —1

In that way the complete element matrix (9) is defined.

The DShF (8) gives a twisting moment component M, which is a function
of the bending moments M,, My, — M,, = f (M, M,). The application of an
energy approach, as the variational principle (2), results in additional submatrix
A F,, which is due to that twisting moment component My,. The element of
Ref. 2 is with such submatrix A F,. That submatrix is with summ of the coeffi-
cients in all rows equal to zero and their values are much smaller of those of F,.
As a result of that, the element of Ref. 2, as well as the previously developed ele-
ment with (— A F,) give converging results. On the other hand the direct method
applied here gives A F, = 0. This twisting moment components represents a
problem in the development of stiffness elements in the standard way, which is
solved by application of reduced Gauss integration. This problem needs further
investigations.

One disadvantage of the presented element is the linear distribution of the
moments. A much better distribution would be a quadratic_distribution of the
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moments along the boundaries. The following deformation shape function pro-
vides a higher order moment distribution,

W=a +ax+... +a;x*y+a,y’+ a; Yy + a,%° Y (12)

where the first 12 terms are the same as (7). For definition of the additional 4 terms
in (12) on the element of Fig. 2 as unknowns should be added the normal moments
at the midsides.

The DShF (12) doesn’t satisfy the condition (3). There is 0° Wiox*y* 50,
Therefore the variational principle (2) has to be applied. As a result of that, the
boundary forces which the variational principle (2) gives, and the boundary forces
computed from the DShF directly will not be the same. However, if the twisting
moment components M,, = f(M,, M) are excluded, the boundary forces com-
puted in both ways will be approximately the sam: and the element developed
on the base of the DShF (12), by application of the variational principle (4) or
the direct method, should be a very good one. Simmilar element in the plane stress
problem has given very good results [6].

5. Plane stress element

The governing differential equation of the plane stress problem in terms of
the stress function @ is as follows,

AAG =0 (13)

That is the same, biharmonic equation, as the homogenious differential equation
of the plate bending problem. The normal stresses N, Ny of this problem are
equivalent to the bending moments M, M, of the plate bending problem. There-
fore, the condition (13) requires linear variation of the normal stresses, as the con-
dition (3) requires linear variation of the bending moments. The following DShF
provides such linear variation of the normal stresses,

U=a, +ax+ay + a AR-L

ty
+asxy + agx*y t N | U f Ny
14 - NLX*‘W{'—?— S 7 P N
( ) '7 Ix
V=5b+bx+by+by + .
5 Ve 116 X
~ 81l =
1 bxy + b, xy* 1’8
These DShFs can be defined by S R e 42 Ny
the normal stresses N,, N, at the ; 5 l
corner nodes (4 x 2) and the mi- Al e o Ny

dside node displacements (2 x 2),
T B ‘ Fig. 3 Plane Stress 12 Degree of Freedom Element
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The DShF (14) for the u component of the element of Fig. 3 becomes,

1 . x° - x* y
U:‘ 2U' - P SSE— 123 TN REAE
4{[ °+N“‘(x 2a)+N“$(x42a)]( b)+

9
x°

X [2 H, N‘,,x(x s a) L mx(x-_zi‘z_a)] (1 +—3bi)} (15)

where A7, = 0 U/0 x is the strain. Simmilar is the DShF for the v component
of the deformations. The element matrix and the matrix of the unknowns can be
defined as follows,

Ke _ [Fn Fuv]
T
Fw Kuv

(16)
8T = [le e+ Nugp N - - Naws Uss Uy, Vo, Vil

If in Eq. 15 is substituted, for instance jy,, = 1 and all other parametars equal

to zero, for x = — a the following deformations along the side 1—4 are obtained,
1 3a _ a _ y a
U= {205 M = ] (1= ) + 2O -

Now these deformations have to be concentrated at the nodes 1 and 4 and in that
way the equivalent nodal deformations found. The distribution of the deformations
is linear and therefore the equivalent nodal deformation, for instance at the node
1 is as follows,

1 ab . - = i
U, = —UM( —i)-dy =—(—6 Nig—2 Noy— Now — 3 Nuz) +
2 b 12
2b b
HERCA

The coefficients of this expression give the first row of the element matrix (16),

—ab —ab —ab -——ab%_b_l_;_]_ 17

Fni:Fuviz ] > > 3 >
[’. ’][2 6 12 4 33

By analogy the complete flexibility submatrices can be developed.

The submatrix F.L is a stiffness submatrix. Its coefficients represent equi-
valent nodal forces due to normal forces N,, N,. That matrix developed in the
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energetic way contains shear force components which are function of the normal
stresses, — N,y = f (N, Ny). On the other hand this submatrix should be tran-
sposed submatrix F,,. In order that condition to be satisfied, those shear force
components should be,

Nx?/ :f(Nr,c’ Ny) =0

The element developed with this condition very well simulates the bending stresses
and gives very good results.

The stiffness submatrix K,, can be de- _._(_C,,
veloped by application of unit displacements, 4 —43
Fig. 4. The application of, for instance U, = I, 1\\ 7 #T‘
cuases shear stresses, which according to (15) \ \
are equal to 8\ 6 41T,
i (.;VIV \\\ ﬁ\\
ou E | \ \
=0 L = = \ \
> oy 2(14 )b ) P . IR - T
T, Wt

These shear stresses give forces which have to
be transfered to the corresponding nodes 5 = 8. Fig. 4 Development of the Stiffness
Those forces define the coefficients of the first Submatrix by Application of Unit

row of the submatrix K,,, as follows, Displacement
E -
Kuvli.:_——”[i; a,I,—]]
2(1+v) L& b

The complete submatrix K,, can be developed by analogy. So, without compu-
tation of any energy and variation of it, the element matrix is developed directly
from the DShF. The element developed in that way gives very good results [5, 6].

The accuracy which an element can give primarely depends on the offdia-
gonal terms of the element matrix, or the order of boundary stress distribution [1].
A quadratic distribution of the boundary stresses would be much better than linear
distribution as is the distribution of the stresses of the element of Fig. 3. With
such quadratic discribution can be the element simmilar to that of Fig. 3, with
the two deformation components at the midside nodes. Such element has been
developed as isoparametric one, in the standard way [6]. The element gives very
good results. The same element can be developed by application of the direct
method.

The element of Fig. 3 is not quite suitable for isoparametric formulation.
However, if the deformation components are cept as unknowns along the sides,
not in x or y directions, the equivalent isoparametric element o that of Fig. 3
should be a very good one also. The only disadvantage of such element would
be the unsymmetry of the system equations which have to be solved.

One of the main advantages of the direct method as shown here, is the appli-
cation of boundary integration only. Such integration makes possible explicite
definition of curved boundary elements (isoparametric elements). That would
be the final aim.
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6. Three dimensional element

The three dimensional elements can be developed in the same way as the
plane stress elements: from the DShF directly can be computed the boundary
stresses and deformations, which afterwards have to be transfered to the nodes.
The equivalent nodal forces and deformations define the element matrix.

8 12 Vs
i /T _77? 1-8'Nx Ny,NZ
. ___/’/_4% f‘”ﬂ_sr./{s 9 -U
r/ 91 1 Aylv) .20 1316V
et x(u) | 17:20-W
[®]
o~ 175 ’J’ o ]8
o LA
o A B
-1 1 SR 7/
9 2
| 2a i
 —

Fig. 5 Three Limensional 36 Degrees of Freedom Element

The application of the direct method in the three dimensional problem wil
be ilustrated on the development of the simple element of Fig. 5. That elemen
corresponds to the plane stress element of Fig. 3. At the corner nodes the unknown
nodal parametars are the normal stress components and at the midside nodes —
the deformation components along the sides. In that way assumed unknown nodal
parametars represent independent degrees of freedom. The DShF which is de-
fined by those degrees of freedom will satisfy simmilar condition to that of (13)
for the three dimensional problem. According to expression (15) the following
DShF for the U component of the three dimensional element is derived,

U:%”Z U, + Nm(x— x) + Nx(x+2i)j (1 —/B) +

2a a

2

+[204+ R s +2i) + Ru(r— 2)a +y/b)} (1 —2/0) +

2a a

" -H[z Un + Nox (¥ — i)] + N (xS ) a4

o

2 2

= = X
3+ P2, R, (x + —’5-) s st(x--
2a 2

)] a+ y/b)} d + /o) (19)

a
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The element matrix and the matrix of the unknowns can be defined as follows,

F F
K| & v (20)
; [F,f;w K ]

uvw

T = [f\?lx e Kfsa:’ N’w s e NS!I’NIZ s N'sz Uy g
VIS' e Vi Wy .. -Wzo]

The element matrix can be developed by application of unit forces and unit de-
formations. For instance the application of N, = 1, according to (19), gives the
following deformed surfaces:

— for x = —a, U=—::—6‘-1(1 —y[b) (1 — 2/c)

x=a U= % (1 —y/b) (1 — 2[c)-

The volumes of these deformations [ U - dy : dz are equal to — 3 abc/4, — on
the aurface 1, 5, 8, 4, and abc/4, — on the surface 2, 3, 7, 6 (Fig. 5). These vo-
lumes define the summ of the first 8 terms of the submatrix F, of the element
matrix (20). The distribution of these volume deformations to the corresponding
nodes gives the coeeficients of the first row of the submatrix F,,. For instance for
the node 1 the following equivalent nodal deformation is derived.

U, =

jf U(—y/b)(1 —z/c) -dy - dz = — abc/3

o o

In that way computed first colomn, i.e. first row of the submatrix F, defined as,
Fn - [chFnyFnz]
is as follows,

— abc
36

Fﬂxli == [12) 4’ 2) 6’ 6, 2’ 13 3]

The other components of the first row of F, are Fyy;; =0 and F,,;, = 0. But
if as unknowns are substituted the stresses N, Ny, and N, instead of the strains
Nz =0u/0x, N, =0v/0y) and N, = 0 w/0d 2, those submatrices will get some
values, which will be a function of the Poison’s coefficient v.

The submatrix F,,,, can be developed in a simmilar way. For instance the
parametar U, gives the following surface deformations,

U =7}Ug(1 — 318 (1 — 5/¢)
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The volume of these deformations on one surface of the element is as follows,
U dy-ds=bl,,

The distribution of this deformation to the corresponding nodes is the same as
the distribution of the deformations due to J;, previously defined. In that way
computed equivalent nodal deformations give the first colomn, i.e. the first row
of the submatrix F,,,, which is,

Fuvuui o f9‘“ [4) 23 2: ]; 0.. % 0]

The complete submatrices F, and F can be derived by analogy.

urw

The stiffness submatrix K,,,, can be computed in a simmilar way as the
submatrix K,,, of the plane stress problem, by application of unit nodal deforma-
tions and computation of the shear forces along the boundaries. Those shear forces
distributed to the corresponding nodes will give the coefficients of the submatrix

K,,p- The derivation of that submatrix here is not given.

The three dimensional element developed in that way is not tested yet.
The expected accuracy of the element should be very good, as is the accuracy
of the corresponding plane stress element of Fig. 3. The element has to be deve-
loped with curved boundaries, explicitely defined. The sugestion given for the
plane sress element holds here also. The deformations at the midside nodes have
to be hold in direction of the sides.

.

7. Conclusions

The boundary forces and deformations computed directly from the defor-
mation shape function and then distributed to the nodes define the element matrix.
That approach is called direct method of development of finite elements.

For the application of that method to be possible, the deformation shape
function has to satisfy the homogenious differential equation of the problem with
some small modifications. In such case the boundary forces computed by appli-
cation of a variational principle and directly from the deformation shape function
will be approximately the same. Otherwise, as is the case with the refined elements,
there is descripancy in the forces computed in the both ways. That discripancy
is the main problem in the current practice of the FEM.

The application of the direct method is ilustrated on the development of
simple one dimensional, plate bending, plane stress and three dimensional ele-
ments. The mixed two dimensional elements developed in that way give very good
and allways reliable results.

The method is and simple in the proces of developmentitis easy to follow
what realy is going on. The method involves boundary integration only. Such inte-
gration can lead to explicite definition of the isoparametric elemencs. That would

be the final aim.
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DIREKTNI METOD ZA RAZVIJANJE KONACNIH ELEMENATA

Funkcija deformacija u elementu trebalo bi da zadovoljava reSenje homogene
differencijalne jednacine problema, sa mogu¢im manjim odstupanjima. U takvom
sluéaju sile (deformacije) po granicama elemenata proracunte direktno iz funkcije
deformacija, zatim prenete na ¢vorove, definiraju matricu elementa. Takav postu-
pak nazvan je direktni metod za razvijanje konacnih elemenata.

Primena direktnog metoda ilustrirana je na razvijanju grednog elementa,
elementa za savijanje ploca, elementa za ravninsko stanje naprezanja i trodimenzio-
nalnog elementa.

Elementi razvijeni ovim metodom su vrlo dobri i uvek pouzdani. Ovaj metod
moze dovesti do razvijanja izoparametrijskih elemenata definiranih explicitno.

IMUPEKTHUH METOM JJIsI PASBUTHSA KOHEYBIX EJJEMEHTOB

Dyuxiua gedopmaliii B e€JIeMEHTE [OYKHA Y/IOBOJIETBOPST PELICHUIO
XOMOT'€HHOTO Ju(PepeHIMa/UTHOTO YPaBHEHUA IIPOOJIEMBI, C MOYKHOCTIO MEHBIIIBIX
moubuKaimii. B Takom ciayuae cuisl (Hedopmarmii) MO Kpasy €JIeMEeHTa II0JIy-
yeHHBIe TpAMO u3 QyHkImm Jedopmanuy ¥ 3aTeM IIEPEHECEHHBIX B y3llaX HAroT
MaTpully ejieMeHTa. TaKoi 1mo/Xo/ HasBaH JUPEKTHHI METO/[l PasBUTHA KOHEUHBIX
€JIEMEHTOB.

IIpumeHeHre AWPEKTHOrO METOAA IOKA3aHO Ha PpasBUTMIO OajlouHoro ele-
MeHTa, eJIeMEHTa IUIMTHI, €JEMEHTa IUIOCKCCTHOrO COCTOSIHMA HAIPsHKEHHH H
00beMHOr0 ejleMeHTa. EJIeMEHTBHI pa3BUTHE €THM METOAOM JIal0T O4YeH XOpollre
M HafleyKHbIe pe3yJIbTaThbl. ETBI MeTO MOMKET NMPHUBECTH K EKCIUMIUTHOMY [ie-
(bUHUPOB: HUIO M30TIAPAaMETPHUYECKHUX €JIEMEHTOB.

A. Poceski, GradeZen fakultet, Rade Koncara 16 91000 Skcpje, Yugoslavia

10 Mehanika 11





