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STATIONARY AND UNSTATIONARY FORCED NONLINEAR
OSCILLATION MODES OF THREE DISC ON LIGHT ELASTIC
SPINDLE

P. Koaid
(Received October 26, 1983)

This article deals with three disc forced oscillations on light elastic spin-
dle by means of differential equation sistem of the first approximation for
amplitudes and phases of forced and two-frequency oscillation mode in the
case of nonlinear dependence of the spring elasticity force moment between the
first and the second discs. The differential equations of the first approxima-
tion for amplitudes and phases are derived from the basic ideas of asymtomic
method KpsuioB-Borowo6os-Murpomomnsckuit for one-frequency oscilation mode.

The spindle model with discs is shown on fig. 1. The forced moments
E, cos 6, and E, cos 0, affect the second and the third disc. E,;, E, are the
amplitudes of forced moments and d0,/d¢ =v, (%), d0:/dt =V, (r) are fre-
quencies of forced moments.

Conditions @,, @, @s are generated coordinations of given system. The
spring clasticity force moment between the
first and the second disc iz a function of - E,COSﬂ‘q

rqlative at}g‘.e of 'the first and the secqnd EZCOS'BL
disc rotation and is presented by following , ¥ ¢
function: S
c2

Flp, — @) = ¢ (2 — 1) + €f (@2 — P1) (1) >t

. i ¢, R
The spring elasticity force moment between gy o, 3,
the second and the third disc is" linear tun- < %
ction, Fig. 1.

M, = ¢; (93 — @2)- 2)

. There is, between the second and the third disc, an internal resistance
in material. Due to this, the internal resistance force moment is caused and
it is in proportion to the second disc relative speed rotation in regard to the
second disc, « is the coefficient of proportion.

The differential equations of oscillator system are:
5*
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Ji@r— F(py— @) =0
o @2+ F (93 — 91) — ca (95 — 92) = E, 08 0, + (5 — s) (3)
Js @5 + ¢ (93 — y) = — « \Ps — ¢2) + E; cos 0,
If the new variables are introduced,
X=Q— @ Y=0;— ¢ “)

the differential equations (3) are now;
By & + o (J; th)x—cdiy = —(J + T)ef(x) + E Jycos 0, +ald, y
Sodsy +ea(No+ Jo)y — C’I Jax = —a(y +J5) y — E Jycos 0, +
+ EyJy €08 0, + Jye f (x) (5)

Forming approximation for differential equation sistem we assume that
the coefficient of internal resistance «, non-linearity coefticient of the spring
e elasticity force moment and amplitudes of forced moments E, and E, are
small values in comparison to other system parameters. The non-linearity of the
elasticity force moment of the spring between the first and the second discs
is given by following function:

!
€1 X —x Sx<x
3 .
F(x) = a1 x4+ ¢y <2< 40 (6)
¢1% + ¢ —00 X —X

We assume that the aproximation for differential equation in the first
approaching is:

x =g, cp(l”cos ©; + ¢1) + a, cp(,z’cos (0, + )
y = a, 95" cos (0, + ) + a3 65 cos (0 + $s)

where a,, a;, ¢, Yy are unknown time functions which we define from the
differential equation system of the first approximation:

da, o E (J o _ g (l)) .
e Jyen2 _ gy by Bl T 3%92°) in
70 " [(Va +J) 92" —Ji 91 93] @ R R = by
da«' o ’ E J (2) weid
it NP2 _ g oDy, _  EavaP2” g
d t 2 My [(‘Iﬂ + 8) 2 1% CPZ ] Qg mz (0)5 "I" Va(T)) q)ﬂ (8)
d ~ 3v, M) g (22
dr — @1~V (t) ﬂ_S_mlcST[(cPl a,)" + 2 (a3 917)°] —
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_ E (i1 — J593)
m, a, (@, + v, (1))

cos

dy 3v
d: T e A e 8 m:m [2 (‘P(U a;)* + (a; (p(Z))z] £

" Jz E2 (2)
My ay (W, + v, (7))

COS s

In the differential equations (8) the following marks are introduced:

v = cr [J395° ¢V — (J, + Jo) 4]
vy = ¢y [/ 02 91 — (i + Jo) 9]
m, = J, o o + J, J, oD @0
my = J, J, o &2 + 1,7, 0P o
For the following physical-geometrical system characteristics:
J, = 487,87 Nems®  ¢; = 10,31 10° Ncm/rad
J; = 99,89 Ncms?® ¢, = 7,65 10° Ncm/rad
J; = 31,61 Ncms? ¢; = 1,65 10° Ncm/rad
o = 10 Ncm/rad
the eyclic frecquencies ,,undisturbed system” are:
w; = 67,792 s1 w, = 120,681 s1
If the dimensionless amplitudes are introduced in the form:
a1 = a, ¢\" /%, a = a, c;>(12)/9c1 %, = 0,005 tan,

the differential equation system of the first approximation is:

da, ; 271,956 1
= — . — sin
dt 0’_295529 N T67,792 + v, (7) ¥
da; o 339,665 \
= — 0,802748 - . sin
! SREOCISS * s v (120,681 + v, (1)) v

(5]

(10)
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271,956 .
ay (67,792 + v, (1))

%—67792 B.037485% (ay" + 2 ey = 0s
dy T e _VI(T)+ ,037 (al + 2 ay") — 1

339,665 .
a3 (120,681 + v, (1))

ii’—uo 681 0,06885 * (2 a;> 4 ay? s ¢
dt b 5 _V2(7)+ ) ( a +az)+ 2

The system passing through the resonance and stationary oscillation
system mode arc exemined by mean: of equations (10). We determine the
stationary oscillation system mode when the side of equations (10) is equalled
to zero. Then we can easily eliminate {, from the first and the third cqua-

tion, and ¢, from the second and the fourth. Therefore we get the following
equation system:

0,349351 a;’vi + a)° [67,7922 — v} + 0,07497 -v, - (ai® + 2 aD)® = 271,956

2,577614 a3* v} + a3’ [120,681% — v3 + 0,1377 - v* - 2 ai® + @2)]* = — 339,665
(11)
If we determine a; from the first equation (11) and change it in the

second we’ll get the imlicit equation in which ay depends on v, and v,. If we
fix the frequency values v, = const we’ll get the stationary mode curves:

a=f() &=rfi)
‘~IJ1 =fs ("’1) tpz = f4 (Vl)

Similarly if we fix v, = const we’ll get the stationary mode curves:
ag=h () @ =h(

LIJl = hy (Vz) ¢2 = hy (v2)
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On the figures 2,a,b, 3,a,b and 4,a,b we can see the families of fthe
first and the second harmonics of the amplitude-frequency curves in the § sta-
tionay resonance mode for the continual change of discrete freguence values
v, and v, of forced moments in the resonance bands. On the figures 2,a and

2,b we can see that amplitude-frequenc; curves ay (v1» v,) of the first harmo-
nic for stationary mode during continual change of discrete frequency values
v, in the area v, € (~ 6451, ~72s-1) slightly alter with discrete frequency
chage v, € (~ 11451, ~130s1).
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On the figures 3,a and 3,b we can see amplitude-frequency curves of the second

harmonic a; (v, v,) for stationary mode during continual change of discrete
frequency values v, in the band v, € (~ 64571, ~ 72s-1), with discrete frecqu-
ency change v,€(~ 114571, ~ 130s-1) sligatly alter both in size and form of
the amplitude.
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We can conclude that continual change of discrete frequency values of
the first harmonic essentially influence during simultaneous selection of the
values v, and v, from the ,,critical” band of the coresponding resonance fre-
qtlencies is specially expressed. For v,e(~ 12251, ~ 126 s~1) the curves
(@3, v,) change character in the area Vi €(~ 66571, ~695s-1). The influenc>
of the first harmonic on the sccond one in the area v, < 122571 is expressed
in amplituda decrement a;_ and at the same time in amplituda increment a’;-
In the area v,€(~ 122571, ~126s-1) the first harmonic influenc: on the
curve (ay, vi) is expressed in amplituda decrement and increment of the
pirregular” curve part. For the higher values v, > 126 s-1 the amplitude in-
crement of the first harmonic causes the amplitude increment a> of the se-
cond harmonic. On the figures 3,a and 3,b the families of the amplitude-

* * .
frequency curves a; (v;, v,) and az (v,, v,) are exspressed for discrete frequency
values v, € (~ 66 s1, ~70s-1). By cherg'ng the discrete frehuency values v, tO
. * . .
Vi < 69571 the amplitude-frequency curves a; (v;» v5) of the first harmonic are
nearly straight with deformation in the resonance area v, € (~ 12051,

~ 125 s=1) which is expressed in slight amplitude decrement ay. For v, = 69s1

there are three branches of the amplitude-frecuency characteristic a, (Vi V)
with large, middle (unstable) and small amplitudes and slight deformations in
resonance band v, e (~ 120 s-1, ~ 126s-1).

The influence of the second harmonic amplitude on the first harmonic
phase and amplitude is insignificant. By changing the discrete values v, to

vy << 6951 the amplitude-frequency curves as (v,, v;) of the second harmonic
are with one characteristic branch and amplitudes maximum which are mo-
ved to higher frequencies «,. When v, = 69 s—1 three branches of amplitude-
frequency curve appear and the middle one is unstable. When v; > 69 s-1

- * . .
amplitude-frequency curves a, (v, v,) are with one branch and amplitudas
maximum move to lower frequencies closer to ..

We can conclude that the influence of the first harmonic on the second
harmonic phase and amplitude is significant in the narrow frequency bend v,
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whose values arc grater than ©,. Tac influence of tke second harmonic on
the first one is insignificant. We can get the unst.tionary amplitude-frequency
characteristics by means of numerical integration of the differential equation
sysem (10) by Runge-Kuta’s method.

On the figures 5.a and 5.b we can sec the amplitude-ficquency charac-
teristics during simultaneous system transition thrcugh resonznce with its own
first and second frequency in the frecquency increment dircction of diturbed
moments for several different “speed” transition. The frequency increment is
performed according to linear laws:

V]L:Vlo’]l’ﬁt
vy = Voo + B ¢

where (3 is ”speed” transition through rcs)nance. If we watch these curves
a* (v;) we can notice that the exstremes of these curves are getting larger
while the “speed” transition through th: resonance zone is getting lesser. Also
the exstremes of these curves are further from their own first value , if the
“speed” transition through the resonance band is higher.

The curves a* (v,) have the similar characteristic as th: previous ones
with the exception that th: first harmonic amplitude is more expressive.
Therefore, there isn’t the clearly expressed transition through the re.onanc:
area of its own second frequency w,.
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On the figures 6.a and 6.b we can see the amplitude-frequency curves
during simultaneous system transition through the resonance with its own
first and second frequency in the frequency increment direction of disturbed
moments. The frequency decrement is performed according to linear laws:

vlmvm—ﬂt

V]_:Vzo_ﬁt
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The curve extremes a (v,) are on the left side of their own first value
®, and they are further from it if the “speed” transition through thz reso-
nance state is higher. For the lower ”speed” transition thourgh the resonance
area, the amplitudes increase and they are closer to their own first value o,
if the ”’speed” trinsition through the resonancs arex is lower. With the curves

as (vs) we can notice the exception. For the lower “speed” transition through
the resonance area of its ow1 second frequency, the amplitude do not increasc.
This is the result of the more sigaificant influence of the first harmonic
amplitudas on the second harmonic amplitudas.
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- CTAHMOHAPHBIE U HECTAIITMOHAPHBLIE PEXXHUMBI
HEJIMHEMHBIX KOJIEBAHUI TPU ITUCKA HA JIETKOM
YIIPYTOM BAIJIE

Peswme

B crarbe paccMOTpEbI BBIHY)K/IEHEBIEC FeIMHEHHBbIC KOJIeOaHHUsA TpU M-
CKa Ha JIEKOM YIPYIOM BaJle €O CBsJSKOHM IEJIMEEHHOH XapaKTepHUCTHKH. ¥ -
PaBHEHMs IIEPBOr0 IPHOMIKEHHA IIOCTPOCHBI ACAMTOTHUYECKHM METOIOM 1A
aMIUTMTYbI M (asel JBYXYaCTOTHOrO pe)kuma Kosebauusa. OOpaborana cepus
YHCJIOBBIX IIPUMEPOB [UJIS CJIydas CTAl[MOHAPHBIX M HECTAIMOHAPHBIX YCJIOBHM
M HAapHCOBaHbI AMIUIMTYHO-YAaCTOTHBIE KPBIBBI KaK CTAIMOHADHBIX TAK U He-
CTAllHOHAPHBIX JBYXUYACTOTHBIX PEKUMOB KoJieOaHWsI Bajga I cllydass H3Me-
HEHHMA YacTOT BBIHY)KIEHBIX MOMEHTOB.
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STACIONARNI I NESTACINARNI REZIMI NELINEARNIH
OSCILACIJA TRI DISKA NA LAKOM ELASTICNOM VRATILU

Izvod

U radu se izradunavaju prinudne nelinearne oscilacije tii diska na lakom
elasticnom vratilu ra sponicom, nelincarne karakteristike. Asimptotskom me-
tedom su postavljene jednaine prve egprcksimacije za amplitude i faze dvofrck-
ventnog rezima oscilecija. Obradena je scrija numerickih primera za izab-
rano vratilo sa dirkovima za slucaj stacinarnih i nestacionarnih uslova i nacr-
tane amplutudno-frckventne krive kako stacionarnih tako i nestacionarnih dvo-
frekventnih rezima o cilacija vratila za slu¢aj promene frekvencija prinudnih
momenata.
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