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Symbeols used

BT e height of the element

Bie  Ianoais- . change of curvature

SRS strain the elasticity limit

T TE RN ek A maximum strain of the element

" e PRGN element of the curve length lying on the shell surface

SRR, S covariant and/or contravariant tensor of the dislacement in
the element of shell §

B e B displacement in the direction of the normal to the element
of shell §

ST =y JRpsin covariant derivative

v ...." .. Poisson’s ratio

i g ¢ AL constants depending on the rigidity and material of the shell

. ont B g inverse valuz of shell rigidity

G s W T inertia moment of the cross section

Bl 1i-vuves a Young’s module

o o i unit vectors of the Cartesian coordinate system (y', y° ¥°)

R s continuous load which is parallel to line P, P, joining the
element boundaries

e el width of the element

~ g R normal stress in the cross section

1. Introduction

Thin elements subjected to external loads are characterized by big dis-
placements. This is a characteristic of all thin springs which operate in the
elastic region. Such elements are used in different fields of technics as bea-
ring elements or even more frequently as basic elements in various measur-
ing instruments. Therefore they are of very various forms and sizes and are
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manufactured with great accuracy from high quality spring materials. These
elements are widely used also in thz field of electronic: in the manufacture
of microswitches. They ar: of very small siz> and frequently operate in pairs
according to the principle of cystem jump. They have to operate perfectly in
very different climatic conditions with a for:seen scrvic: life. These require-
ments can be fulfilled only by the elements manufactured from high quality
materials or alloys which are very expensive and which have optimal gzome-
tric characteristic:.

Some solutions of the bending of thin uniaxial curved element; with
constant rigidity were given by S. D. Ponomarev and L. E. Andreeva (1),
but general solutions of arbitrary untaxial elements with incon ‘tant rigidity are
less known. The paper present; a new contribution to the determination of
deformation and stress states in thin arbitrarily curved uniaxial elements the
rigidity of which can change along their axis.

The mathematical model was made on the following assumptions:

a) The cross sections rectangular to the axis of the element, which were
flat before the deformation remain so also after the deformation process. That
means that the influence of tangential stresses is not taken into account and
that the normal stresses are distributed linearly across the cross section.

b) The axis of the element representing a line connecting the centres
of gravity of the cross sections is an axis of symmetry.

¢) The cross sections along the element axis are very cmall compared
to the length and/or curvature radius of the element axis.

d) The curvature of the element axis is arbitrary.

e) Rigidity along the element axis is arbitrary.

f) The direction of the external loads does not change during ‘the dis-
placement process of the element.

g) The element can be loaded at both boundaries by an external force

lying on line P, P,, by the bending moment at the boundaries and

continuous load along ths element axis which is parallel to hmg P, B
The bending moment acts in the direction of the second Gaussian coordinate.
h) The specific deformation appearing in the direction of the tangent to
the element axis is equal to zzro.
i) The specific deformation of the element with big displacements has
to remain in the elastic region, therefore the following inequation has to be
fulfilled.

h
€max = 'EK < €g

2. Basic equation for the determination of the displacements

The basic equation for the determination of the displacement tensor of
thin elastic uniaxial clement can be obtained from the nonlinear theory of

thin shells 2, 3, 4.
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Let a shell be defined in the Euclidean space E,, (5) by the orthogonal
Cartesian coordinate system y%, ¢ = 1, 2, 3 in which the function

F(y, »%, ) =0 (1)

represents a geometric place of points which enable an analytical expression of
the shell surface S.

To simplify the formulations we introduce Gaussian curvilinear coordinates #,
i = 1,2 on the shell surface S by which we can express the Cartesian coor-

dinates.
ycp e yw (uls uz): Q= 1:2)3 (2)

For a one-to-one transformation at least one of the two-lined Jacobian deter-
minants has to be different from zero.

The first quadratic form on the shell surface
ds® = a;j dut dul (3)
yields the covariant metric tensor of the surface in E;

0y® 0y®

Az = . 5
* out ouw

(4)

Besides the curvilinear Gaussian coordinates also curvilinear space coordi-
nates x% o = 1,2,3 in the Euclidean space E; are suitable for the analysis of
the shell surface. They are related to the transformation equations by coordi-
gates ¥%. 0 = 1,2,3, Fig. 1.

¥* = x% (vt v o) ®)
the Jacobian determinant of which has to be different from zero.

The square of the linear element of the curve ds in E; written (defined) in
the coordinate system x% o = 1,2,3 is

ds® = gup dx* dx® (6)
where
ayﬂp 0 y@
ol T Pcezreail 7
e ox* o0xP ™

represents a metric tensor in E,

The system of equations (2) defining the shell surface S, can be written also
in the following form

x5 = x% (g ¥ o = 1,23 (8)

4 Mehanika 10
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Fig. 1. Relationship between the coordinate systems.

Hence the relation between the metric tensors is

0x* 0xP o, p=1,23
dut dxf i = 1,2

Ai; = 8ap

)

where the indices denoted by Greek letters having the values from one to
three refer to space E, in which there is shell surface S, while the indices
denoted by Latin letters having the values from one to two refer to shell sur-
face S lying in space E, Further the elements g,3 and the differential dx*
represent the tensors in the case of transformation into space coordinates x%,
and the element a;; and the differential du’ the tensors in the case of trans-
formation into Gaussian coordinates u?.

The relation between the metric tensors (9) contains the elements wirh
Greek and Latin indices, which means that the partial derivative

B axB
i
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can be considered as a contravariant tensor of rank one in space E; or as a
covariant tensor of rank one on surface S.

An arbitrary point P on surface S which is defined by Gaussian coor-
dinantes ui, i = 1,2 or by a space coordinate system x% o = 1,2,3 can be de-
fined also by a radius-vector

II* = x* (4", u?) =% (2} =% =) (11)
From equality (11) we can define by transformation in point P

0y® _ 0y° oxP 0y~ 5

— : (12)
0wt ox® out  oxB
the fundametal covariant tensor of curvilinear coordinates x*
0 y°® ;
h, = or hg = respectively (13)
0 x* i 0x
and the fundamental covariant tensor of Gaussian coordinates u!
0 y° 0y® .
e . = —~, respectivel 14
fo= S5O =g TP y (14)

Considering tencors (13) and (14) the fundamental metric tensors (4) and (7)
can be written in a simpler form

a;; = fif; or gap = hy hg respectively (15)

The covariant unit tensor of normal s, in point P on shell surface § is de-
fined in a curvilinear space coordinate system x% o = 1,2,3

1
o = 1 doug 35 5 (16)

where the absolute Ricci’s anti-symmetric tensors

. 1 e
xH = \7@';\ Y Or doup = ‘/'5’4181 €ou o

consist of the determinants of metric tensor az; and gys and e-system repre-
senting the anti-symmetric relative tensors of weight -+ 1, [5].

4*
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The covariant unit tensors of normal n, and the contravariant tensor of
radius-vector R® = x®, are also functions of the Gaussian coordinates uf,
1 = 1,2, hence their differentials are the same.

on, Y
dn, = n‘,’ dut or dy® = 22— du (18)

_()ut 0 u

Their scalar product yields the second fundamental quadratic form on shell
surface §

o, oOvP ...
L (P 6 (NN 1 .
dn, dy S oud du® du (19)

Defining the expression

1 (on @ 0 0y°
by = 5( B A g —Jf:) (20)
2\out ow oul  out
and taking into account equation (14) and the covariant vector
0 ny
e dut ol
we can simplify expressions (20) and (19)
i
by = — EY (m; f5 + mj f;) (22)
dng, dy® = by dut dul (23)

Under consideration of expressions (15) ad (22) the normal curvatures of the
shell elements k;; in the direction of the Gaussian coordinates uf, i = 1,2 are

by
fi fi

24)

tj

The covariant components of the tensor of strain ¢;; and the changes in cur-
vature x;, of a thin shell element are, [2]:

2 = ay — ay,

Xip = b — bk (25)
where

Qi = Cp + Cpg 1 P8 ¢y cps + 0 0 + ag

bit = VI (Ey o, + Ejchi +by g [2 4 1) 0 — (35 + ¢) o))
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Cik = Vg,i — W by
w; = w,; + by oF
E; = co,ccf— o; (1 —{—cf)
Ei=(14e)(1+d)—cd
I=1+42¢;+4(ie—¢e)
ch = ais . (26)
att = 3 ks g,
ag d® =9
a; = Xis @°"
& = a' s

The covariant derivatives of tensors (14) and (21) in the above expressions
can be written also in another form using the formulas of Gauss [5].

The relation between the tensors of moment M?$, strain ¢; and the
change in curvature % is defined on the basis of rheological equations [6] for
a continuum following Hook’s rheological model

M’!’J = DGijkl Kl + BH?'J’CI Er1 (27)
where the contravariant tensors are

Gkl = ik gfl - y yik I — Rl 5 Rl
: ok

Hikl = — gst b, g% gl - 2 gk pil —

1 42“ Y (4% bit — gt pik) (28)

Considering assumption ¢) we can neglect some terms in expressions (25), (27)
and (28). The covariant tensors of strain and change in curvature are then

i fw e = cop + ra (29)

fi fre % = — ©p, — byj ek

similarly under consideration of assumption c¢) we can simplify also expre-
ssion (27)

Mij =D (aik aﬂ _|_ v x‘ik xﬂ) %p (30)
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or in inverse form
p— ? o ]
wip = D’ (ays agi — v Yas Aaes) MY (31)

the relation between the elements of the tensor of deformation of the shell v;
and the contravariant or covariant tensor of the internal moment can be obtra-
ined making use of cquation (29) in equation (31)

Jife
Ef
or (32)

fif]ﬂ s 7
TE'}_ (My; — vai ay M)

Wk, T bij = — (@5 as — V Aas Agg) M

mk,z‘ "!‘ btj CJ]; - —

The physical coordinates of covariant components of the displacement tensor
v and of the bending moments M are defined from ecquations

V;
Vi) = —t = (u, v)
%
(32)
M,

M) = = (My1, Mys)

s J]

Considering the rules for a covariant derivative of a covariant and contrava-
riant and contravariant tensor of rank one with respect to the Gaussian coor-
dinate system

0 (4 j
Yisk = 5k — 0 Lir
vh= Y+ o/ Th (34)
I‘k =—_]__ akh(bajn Jrs c)ah,; o adi]‘)
& 2 0 ut 0w o ul

we can write the first equations (29) and the second equation (32) for the
case i = k£ =1 in the following form, [6]

1 ou 1 odf; w

g = —

v+
1 ou' fil, oW Ry,

(35)

iﬁ_(_l 6w+ u 'U)+ 1 24 (_1ﬁ 02{;+ v u)+
‘ fi ou fi ou Ry, Ry, fife ou® \f, Oou Ry, Ry,
1 1 1 [ 0 0

+ = u) —
2 Ry, fifalow Ui o ut

&A@]=E%4Mu—va 36)
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Choosing the Gaussian coordinates ' = ¢, #* = ¢, the function of the radius
vector II* = y* « = 1,2,3 defining the shell is, Fig. 2,

I* =y* =" R($) cos & cos § + 2 R()sin$ cos ¢ +7° R(I) sing  (37)

where
¥ =3(9)

Considering the assumptions ¢) and g) the stresses and displacement in the
direction of the Gaussian axis ¢ can be neglected. Then the relation between
the curvature radius R,, = r, and the radius-vector II* is the following

11 _ 1 emr , R®AI2RG-RORG g4
R, £t a9 [ (%) + R ()"

Since the value of the first element f, of the metric tensor a;; is

R (%) + R ()
A=Y@ VEM+RO, Y@= o110 _RORO)

and hence

fi =R,y =1y =7(0)

we can write taking account of assumption h), equations (35) and (36) deter-
mining the deformation

_ou(o) _ —w
09
7 (¢) 2 M,

333 > _ e = '—T?—"'
w” (@) + u (o) 7 (3) [ (@) +u(p)] = E(9) 7 (9)

?)

(40)

3. Solution of the basic equation of displacements

On the basis of the assumption and restrictions due to the geometry
and external load we can define the element of the tensor of internal bending
moments M, from the equilibrium condition for the internal static equilibrium
state on a deformed system. In this case the effect of the element displace-
ment in the direction of the coordinate ax is y® on the internal bending mo-
ment is taken into account, Fig. 2. To simplify the expression let us choose
y' =x, y* =y, y* = z. Concidering the relation of the elements of the dis-
placement tensor in the direction of the normal n, and Gaussian coordinate
#' = ¢ to the displacements in the direction of the coordinate axes y and z,
Fig. 2. and making use of the first equation under (40), we can write

v, = —w (@)sin ¢ +ucos @

(41)
vy = + uw (p) cosp + using
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then the internal bending moment M, = My in consideration that
¢=9@ Is

Fig. 2 Axis of a curvilinear element for a given clamping

M, = My = Mo + [R() cos & — R(«) cos o + v5(9)] [F +a:;f9Q(B) r(B) ¢’(B) dB] —
a+ &
= ;} q(B) r(B) [R(3) cos & — R(B) cos (B — o) + v,()] ¢’(B) d(B) (42)

Now let us choose a new indepedent variable

€ = cos @
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Inserting it into equations (41), we then obtain

. __23:21[“(@__
oy 12 BB dav—l_g]

(44)

N z

and the second equation under (40) in consideration of relations & = 9 (&)
@ =¢(£) and B =B (§) yields

2,°(E) — Q&) v, () + GIE v, (B)] =1(8) (45)
where the functions are:
- e
Q (&) ()
A (%) ot B(E)
G 2:(8)] = — (0 )IF+ Ja@®)r® o @B dB] —
sin ¢ (&) 0
at

9(E)
- OI PR r® o B¢ (B)dB)

4 (%)

S et

(M, + (E +°‘+0‘}mq ®)r (8) @ ®) dB] [R(E)cos b () —

— R(x) cos o] —“fr@’q (8 r (8) [R (%) cos 9 () — R (8) cos (B — )] @’ (&) d B)

r o® (&)

Ay = — P 5
Q= ZTwore

(46)

From functions (46) it can be seen that equation (45) represents an
integro-differential equation with incostant coefficients. The possiblity of the
analytical solution of this equation for a general case is probably very small.
Therefore we shall limit only to the cases where no continuous load is pre-
sent, ¢ (B) = 0. In this case the integrodifferential equation changes into a dif-
ferential equation of rank two with incostant coefficients

rE FA® _ AW
. (&) + sin  (E) 2 (%) sin @ (&)

cos ¥ (§) — R () cos )} = f, (§) (47)

v’ (E) =

[Mo + F[R (E) :
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The solution of the homogeneous part of the differential equation (47) can be
defined by the power series [7]

v =1 (E) = a8 (48)

For this purpose we have to develop also the following functions in the po-
wer series

O
r (&) - kz=:0 %
(49)
FAfE -

Hence the i-th element a; of the searched homog:neous solution is

k=

i [

- 56— 1) {Eo(l —k—1)cp a1 — Eo

o0

by @i—y—2) (50)

n
Choosing first as the value of the elements q, = 1, and @, = 0, and secondly

vice versa a, = 0, and @, = 1, then the homogenous part of the solution of the
differential equation (47) is

nE)=c;nm & + ;N (B) (511
where

i i=00 k=
T (i) =1+ _—i_

n=0Qo
t(f — 1) Ez [k§0 (= k= 1)k G- — :Eo b Giza-al
i =00 ri k=co 0o (52)
i= 3 = . ‘ n=
Ny (E) = E + Z S . [ 3 (E — k — 1) Cp az-uk_l — bn ai_n_z]
i=1 Z(l 2) k=1 n=0

The particular solution is determined on the basis of the known homogeneous
solutions =, (£) and 7, (&), [8]

¢ 1 (8) o, (8)
—— - 1 d
v ®=—m®J P hOdE+m® I o h O

(53)

where Wronski’s determinant is

w _ 10y (B)s - M2 (8)] 54
& 0’ (8), g’ (B) e
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The global solution for the displacement of the element in the direction of
axis z is then

2,8 =cmE + BV Uzp (€) = vz [E (9)] = v (¢) (55)

The displacements in the direction of the Gaussian coordinate ¢, of the
normal n, and the derivative are:

u(ep)=—sincpr-dqa + ¢,sin @

sin® ¢

w(cp)=coscpf—vi_1~gﬂdtp+v+1(@——cacoscp (56)
sin® ¢ sin @

w (@) = —sin @ f ——ﬁvfla(@) do + ———vz_l (®) + ¢,y 8in @
sin® @ sin ¢

The displacement of the element in the direction of axis y can be defined
from equation (41) or (44).

In the Cartesian coordinate sys;tem the displacements (55) and (56) con-
tain two and in the Gaussian coordinate system three free integration constants.
Hence on the both boundaries of the element we can prescribe three boun-
dary conditions. An additional boundary condition can be set in the case when
we are interested in the value of external load which causes the prescribed
displacement of a definite point on the element.

The normal stress appearing in the cross section of a uniaxial element is

o h(®) B
Gy = o) ) + 23(9) (M, + F[R(¢) cos 9 () — R(@) cosa] + vz (@) (57)

4. Selection of the most appropriate coordinate system

The determination of the elements of the displacement state tensor seems
to be the easiest in the polar coordinate system p = p(y). In this coordinate
system the expression of the shape of the element axis) = 0 is very simple.
The Cartesian coordinates are

y)=p(y)siny
(58)
Z(y)=p(y)cosy

The elasto-static problem of a uniaxial element with big displacecments is here
treated in the Cartesian coordinate system (y, 2) or in the polar coordinate
system R = R (9). The coordinate axes are chosen co that axis y is parallel
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to the line P, P,, while axis z cuts this line in two. The point of origin of
the coordinate system is chosen in point P,, Fig. 3.

Considering coordinates (58) the polar coordinates of the chosen coordi-
nate system are

R (Y) = [(5" - 3—’3)2 +(&— 2_'3)2]1',2

(59)
(J-’ - 5’3) (.372 _‘371) eIy (2—' — 53) (52 — 51)
(5 - ;3) (J-’.’. _5’1) -+ (J-’ _'5’3) ('él - 2_'2)

¥ (y) = arctan

since also y = vy (%) and hence R = R (9) we can express the curvature radius
o (¥) in the coordinate system (y, z) from expression (38) and with respect to
the chosen points P,, P,, and P, also the Gaussian coordinate ¢ (%)

R () sin & — R () cos & L
R (%) cos & + R(H)sin & 2

@ (%) = arctan (60)

Example 1

We chose a thin curved element with a constant radius of curvature
e (y) = R(9¥) =r, = 16,5 mm having a rectangular cross section of constant
thickness # = 0,1 mm, manufactured from a homogencous isotropic alloy
BERYLCO 251/2HT with a constant Young’s module E = 1,35 - 10°. N/mm?2.

The width of the element cross section is a linear function of coor-
dinate

p (y) = — 0,20879 v + 1,215 [mm]

The element is subjected on the boundaries to a compressive force F [N], the
lower boundary y = — « is clamped, while the upper boundary is free. The
range of the element is limited by the inequation

|| < 59°

The physical coordinates of the displacement tensor in the coordinate systems
(re» @) and (y, z) were calculated by the aid of a computer program using
the programming language FORTRAN. The program is designed so that it can
define displacements at an arbitrarv angle vy. Is also calculates the maximum
normal stress o, and angle v, where this stress appears. The program ena-
bles also the treatment of these elements the width of which is a disconti-
nuous function and is given in tabulated form.

The displacements of the free boundary of the element v = - « for different
values of force F can be seen from the following Table.
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Table 1
F[N] u [mm] w [mm] vy [mm] vz [mm] vo [°] ¢ [N/mm?]
0,01 0,90305 —1,24751 —(,59907 —1,42515 2,46 24,5
0,0311 2,69887 —3,51519 —1,62307 —4,12384 —4.91 69,5
0,0622 5,00613 —6,04032 | —2,59918 —7,40208 —9,83 124,0
0,125 8,62876 —8,68387 —2,99934 | —11,86881 | —17,21 211,5
Example 2

A uniaxial curved element was chosen with inconstant radius of curva-
ture, inconstant width of the element cross section, and with constant thickness
and elasticity module. The element was subjected on both boundaries to ben-
ding moment M, > 0.

In this case the solution of the differential equation (47) writen in the
coordinate system (y, z) with polar coordinates p (y) and vy is:

vzcv)=f[z +f‘%1)“’f—°cp' (9) & ('Y)dT] rME @)@ @Y ()dy + B
61)

where

R (y)cos & (y) + R (y)sin & (y)
[R*(v) + R™ ()]

R +T2R*(N—-RMR" (1)
R*(y) + R™ ()

& (p) = —
(62)
¢ (¥) =

R -EO

R (o) = ROV = S () #" (1)

Similarly also other displacements (56) can be defined where in the total diffe-
rential d ¢ = ¢ (9) ¥’ (y) - dy we take account of expressions (62) and the expre-
ssion for sin ¢ and cos ¢

sin ¢ = — &' ()
N s (63)
cos ¢ = V1 —E?(q)
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BIEGUNG DUNNER EINACHSIGER KRUMMLINIGER ELEMETE
MIT VERANDERLICHER BIEGEFESTIGKEIT UND GROSSEN
VERSCHIEBUNGEN

Zusammenfassung

Dieser Beitrag behandelt die Biegung krummliniger einachsiger Elemente
mit verinderlichen Biegefistigkeit, die wegen ihrer Dinnwandigkeit auch grosse
Verschicbungen ausweisen. Der Werkstoff der Elemente, fur die die grundsa-
tzliche Differenzialgleichung fiir die Bestimmung von grossen Verscheibungen
ausgefiihrt ist, folgt Hookeschen reologisches Modell. Der Einfluss der grossen
Verschiebungen wurde bei der Bestimmung des Biegemomentes auf der Wieise
beriicksichtigt, dass der Gleichgewichtstand auf dem deformierten System be-
handelt wurde. Die Komponenten des Verschiebungsvektors werden allgemein
in der Form von Potenzreihen bzw. fiir das spezifische Belastungsbeispiel in
endlicher Form bestimmt. Zwei Zahlenbeispiele werden berechnet: das erste
Beispiel wurde mit Hilfe des Rechners gelost und Dbetrifft ein Element mit
konstanter’ Kriimmung, wo die Breite des rechteckigen Querrschnitts linear
verinderlich ist. Das Element ist von einer Druckkraft belastet, und auf dem
unteren Ende befestigt wihrend das obere Ende frei ist. Das zweite Beispiel
wird in der endlicher Form analytisch gelost und betrifft ein Element mit ve-
rinderlich>r Bizg:festigkeit der Achse und Breit: des rechteckigsn Querrschnitts,
das auf der beiden Enden von dem Moment M, belastet ist. Das untere Ende
ist drehbar befestigt wihrend das obere ist freiwillig bewegbar auf der Ver-
bindungslinie der beiden Enden.

5 Mehanika 10
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UPOGIB VITKIH UKRIVLENIH ENOOSNIH ELEMENTOV
Z NEKONSTANTNO TOGOSTJO IN VELIKIMI PREMIKI

Povzetek

V tem prispevku je obravnavan upogib ukrivljenih enoosnih elementov
z nekonstantno togostjo, ki imajo zaradi velike vitkosti tudi velike premike.
Osnovna diferencialna enacba za dolocitev velikih premikov je izvedena za ele-
mente izdelane iz gradiva, kisledi Hook-ovemu reolo$kemu modelu. Vpliv velikih
premikov je bil upostevan pri dolodanju upogibnih momentov tako, da je bilo
ravnotezno stanje obravnavano na deformiranem sistemu. Komponente vektorja
premika so doloCene splosno v obliki poten¢nih vrst, oziroma za poszben pri-
mer obremenitve v konéni obliki.

Izratunana sta tudi dva $teviléna primera. Prvi primer je refen z uporabo
racurnalnika in predstavlja element konstantne ukrivljenosti, ki se mu S$irina
pravokotnega prereza linearno spreminja. Obremenjen je s tladno silo, vpet na
spodnjem krajiscu, zgornje krajis¢e pa je prosto.

Drugi primer je reSen analiticno v konéni obliki in predstavlje element
nekonstantnc ukrivljenosti osi in $irine pravokotnega prereza. Obremenjen je

z momentom Mo na obeh krajis¢ih. Spodnje krajisée je vrtljivo vpeto, zgornje
pa se lahko prosto premika po zveznici obeh krajis¢.
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