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1. Introduction

In the present study a micropolar theory of elastic-viscoplastic porous
media is developed. The consideration of possible rotation of grains during the
motion of granular material is the main contribution of the present study. The
basic equations of balance of media with microstructure are presented and based
on thermodynamical considerations a set of constitutive equations are derived.
The theory naturally gives rise to the generation of couple stress tensor and
anisotropic stress tensor. The viscoplastic flow of porous media is studied in
detail and the possible application to soil mechanics is also discussed. Since
soil is a granular plastic material and micropolar continuum theories have been
proved to be a proper model for structured materials, it is conceived that the
present theory could be an interesting model of soil.

2. Governing Equations

According to a continuum theory of Goodman and Cowin [1, 2], a gra-
nular media can be characterized by the bulk density of the distributed solid
volume v. Clearly the solid volume distribution function is one minus the po-
rosity (void volume) function. If p, is the granules mass density then

P = PoVs 0<v gL (2.1)

The distributed solid body must satisfy the laws of motion of a conti-
nuum mechanics. Accordingly, the following field equations must be satisfied
for a micropolar granular continuum:

conservation of mass

)
, §+v.(91{)=0; (2.2)
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for incompressible granular material, i. e., if p, is constant equation (2.2), becomes

% + V- ) =0; (2.3)
balance of Linear Momentum
i+ by =p Vis (2.4)
balance of Angular Momentum
mji,i + eijx Tk + @ Ci = o Jvis (2.5)
balance of equilibrated force
hii+pel+g=pKy; (2.6)
conservation of equilibrated inerta
%—2 vK = 0; (2.7)

conservation of energy

pe =7ty Dij +myvig+ qpy ek

<+ h]c ;bk = é s (28)
Entropy Inequality (Clausius-Duhem)
p N — (qx/0)sy — e A6 = 0; (2.9)

in (2.8), the microdeformation rate tensor D;; is defined by

Dy = Vi,j — €jik Vk- (2.10)

Throughout this paper the regular cartesian tensor notation is employed
with superposed dot indicating the material time derivative and indices fol-
lowing a comma denoting partial differentiations. In equations (2.2) — (2.10)
V. = uy is the velocity vector, u; is the displacement vector 7T;; is the
stress tensor, b; is the body force per unit mass, my;; is the couple stress
tensor, C; is the body couple per unit mass, J is the micro inertia, v; = i
is the microgyration vector, ®; is the microrotation vector, h; is the equili-
brated stress vector, / is equilibrated force per unit mass, g is the internal
equilibrated force, K is the equilibrated inertia, e is the internal energy density
per unit mass, g, is the heat flux vector pointing outward, % is the internal
heat source per unit mass, v is the entropy per unit mass, and 6 is the
absolute temperature.

Introducing the Helmholtz free energy ¢ for the distributed soil
=e— b (2:11)

and eliminating ¢ & between (2.8) and (2.9), we find an alternative form of the
Clausius-Duhem inequality

—p (§ +n6) + Tkt Duk + mit v,k + by Vg
— &v + ;0,0 = 0. (2.12)
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3. Elastic-Viscoplastic Porous Media

In the following, our attention will be restricted to infinitesimal strain
theory and we introduce the plastic parts of strain and microdeformations
through the kinematic decompositions

P i e
8,‘]‘ = éjj — e,-,->

P
q)ij (Dt‘,j o (I);,jj

51’? = Ejj-— 55'1‘, : (31)

where the total strain tensor ¢; and the total microstrain tensor e;; are defi-
ned by :

eij = % (us,5 + tj0)s (3.2)

eji = ui,; — ek Do : (3.3)
and superscript e and P correspond to elastic and plastic deformations,
respectively.

We define our micropolar elastic-plastic porous media as a medium
which posseses a Helmholtz free energy function of the form

‘l’ = _4) (245, 35, Vs Vg5 (I)M, (Df,-, 0, k). (3_4)

The parameter % is the work hardening parameter. Because plastic materials
respond differently in hydrostatic solution than deviatoric deformations, we
shall separate the stresses and strains, so that @(sﬁ) = @ (tij, exx) where ey
is- the deviatoric pait of the total strain tensor i.e,

i = i — ekk Oijf3,

e =0r = ; (3.5)
"The stresses are similarly divided such that

T = Tij — Tkk Otj/a

o

i = 0. e e (3.6)
Furthemore. it is assumed the free energy, ¢, explicitly contain e,l-;-, (I)fj i» with

3 .
A |
Ocj; . 0D;;

0. 3.7)

Tl'.ne conditions (3.7) are required for the micropolar theory of porous plasticity.
Without those assumptions, the micropolar theory of thermoelasticity of porous
media will be recovered.
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Employing (3.4) in Clausius-Duhem inequality (2.12) after some rear-
rangements we find

- d S 0 9
—P(a_%)+’l)0+[f(lcn+9—-im+9 2 q’mﬂ*’?‘ﬂ'ﬁ-‘

OV, 0D, i oDk
-9 aEd;;] Ve + [Ikma —P % TP —% Vst + @ 55‘:1%._: Do,
g afblfi,; (Df;,z] es + {len =l a?;} Dyeny + [P ;i v,i
+p : a:!k D, + ¢ ag)‘;’k (Dg,,] Vieag + (mkz —p O?Dt.z) Vik
- % 90, — (g + p%—)b,k + (h,c — pﬁ%) g — p%éﬁ
o a%?;,:d’ik' %o, (338)

where Tk end Ty are the symmetric and antisymmetric parts of the deri-
vatoris stress tensor and Vg and Vi are the symmetric and antisymmetric
part of velocity gradiant tensor Vik. In the derivation of inequality (3.8), the
following identities have been employed.

d .

¥ ™) = v, — v Vig (3.9)
d .

d P (i)P P 3 11

T (@) = P — Pyt Vi (3.11)

The entropy inequality (3.8) must hold for all independent variations of
8, Vs 35> Dikn- vs vop, Vik,n and vik. These variables appear linearly in the
inequality and thus their coefficients must vanish. It then follows that

e ._‘.;_g_, (3.12)

- oY oY oY oY

Tey = o T e Ot — b BP ), 3.13

oY oy oY oy )

e =3 _ S ol e P 3.14

s "(.aa,dc ha - D AT 00, S
0 d o

- (p o o Bt gl ol m:,)=o, (3.15)
aVJk m,k aq)m,h ’
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oy
Mmgr = > (3.16)
Ry
0
g = _4)’ (3.17)
ov
0V,
and inequality (3.8) reduces to
o - p o ., op ., 1
— — —p—+ — > 0. 3,

Considering the case of heat conduction in the undeformed state implies
that

4y O > 0. (3.20)

Similarly considering a state of the body with uniform temperature and
utilizing (3.19) we find that

—p—x = 0. (3.21)

Employing (2.11) with (3.1) and (3.12)—(3.18) in the energy equation
(2.8) yields

a‘p 4 5 Okl) x P (NJ.
LN &P, — 2% 3.22
S F Fagr TRk (3.22)

0N = gpx T PR —p

which shows that the work of plastic deformation is comverted into heat and
acts as a heat source distribution.

Furthermore, for incompressible granular materials the variation of y is
restricted by equation (2.3), i.e.

v=—v V. (3.23)

For such cases, employing equation (3.23) the terms involving y in
inequality (3.8) may be combined with coefficients of V,x).
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Therefore, the stress tensor is then given by

T =P ( i o o DO gy (D’{:,l)

Vy—

S T
. 0
+(34—p£ﬁv8m, (3.24)
v
0 0 0 0
Tkk=39( - v Vsl — ¥ CDm,z_fLE,—*(Dg,z)
0k 0Vl 0D p.1 0D,
+—3v(§ +-9§$), (3.25)
Vv

and g remains unrestricted..

4. The Yield Criterion

In order to describe the plastic deformation of the porous material
defined by (3.4), the following flow surface is considered [3,4],

f= }' (T‘i.'l': Mmijs 53: v, 0,4); (41)

the plastic state is determined by the condition f =0, while elastic states
correspond to the conditions f < 0. Furthermore, to guarantee plastic flow,
the condition s

. d . 0 ; of - of . 0p .
of Tij=——L—mij+——flT€§+lv+i’ﬁ+—&k=0 (4.2)
aTi,‘i am-;j €jj OV 00 ok

must be satisfied. Introducing

of - . of o O o iy 158
£ = gt Bl S Wi (4.3
i ij Py i o 0" )

the following «ynloading”, “neutral loading” and “loading” features are
now defined..

Unloading Process: when
f =0 Sy E.» <0,

then ef=0 and k= 0. b NG NN
Neutral loading process: when

f=0 , &=0
then sl Lfr=hOe | (4.5)
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Loading Process: when
f= 0 ’ £E2>0,

then 55 #£0" b # 0. (4.6)
Following Naghdi and Murch [4]and Perzyna [3], the following plastic
flow relation it considered
é{?=A( of +i—). (4.7)
> ()Tij amz'j

Determinig A from equation (4.2), we obtain

offd, zusciige sl jaovey 37 % )
A=—(f Tej + fm¢1+—f*v+fe)[};(f~l~ f)
aTij am‘ij ov 00 ()E,'j ()Tij dm?;j

+gikz(af CR. | )]_ (4.8)

ot om
Pq e

where the work hardening parameter is assumed to be only a function of
plastic strain and

20 sified) 0

B (éw) =A% ( f +—~L) (4.9)
()qu ampq

On introducing the notation

h=_[af (af +af)+d_f_—k(df o A )]‘1 (4.10)

oc; \owy  omy| Ok \Otpg Ompg

and recalling the loading criteria, we obtain

0 if f<O0
Y e
", h<£>(‘)f i ) if f=0, (4.11)
azi,- c)mz-j
where < £ > is defined such that
i -}
o et {0 if £ 28
g oy Bl (4.12)

In order to keep our considerations sufficienty general, in the absence
of thermal effects, we introduce a static yield function in the form

Tais €Dy Myiy v
F(rgj €], myg, v) =f( s :{ gl 1, | (4.13)

where the work hardening parameter is defined by the expression
k= k(Wp) = ([t def; + [my; dDy ), (4.14)

with W, being the work of plastic deformation. The constitutive equation (4.11)
may now be rewritten as
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: %)
sf=T<(D(F)>( f +i), (4.15)
where y is a constant and symbol < ®(F) > is defined as follows
< O(F) > = [0 Wl (4.16)
O(F) if F>0.

The function ®(F) must be chosen to represent the behavior of material
under dynamyc loading. Squaring both sides of (4.16), and denoting

IP =1, &P &f (4.17)

5 Tif

the invariant of the inelastic strain rate tensor, it follows that

flrggmyg € ¥) = K (W) { 1 4 @ [(If’r NG {1/2 (a%

i aij;j) (;j; -+ 0‘3:;1 )}_%]}. (4.18)

This expression implicitly represents the dynamical yield condition for
micropolar elastic-viscoplastic, work hardening porous material.

5. Application to soil dynamic

In the following a special static yield function which is appropriate for
soil is considered, [3],

o DU+ S+ g+ S

Ko

Ly (5.1)

In (5.1) D(v, v, e;) is a function describing the dilatation rate of soil, Jj
and S| denote, respectively, the first invariant of the stress tensor 7; and couple
stress tensor my, J, and S, are respectively the second invariant of the stress
deviator 7;; and couple stress deviator 7; and x, is the plastic work hardening
constant.

The constitutive equation (4.15) for the plastic strain rate now becomes

’ ’ 1‘! lf
Py < ) [ '/.D (J1 + S1) -|-sz+ S* 1] > (D3,

Ko

4+ T +_’f’i). (5.2)

The dynamic yield condition (4.18) for the given static yield condition
(5.1) has the form

1/5 3 _ll'
Y,D (J, + S}) + Jir + S =K {1 + - [(Izl;) (E D'+ 1) ]} (5.3)
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Contracting (5.2), the rate of cubic.l dilatation takes the following form
1 ’ ! 1 1/

Ky

el =3Dy<® [

in the limiting case, y—> c, we obtain from (5.2) the known constitutive
equations for an elastic-perfectly plastic theory of soil according to Drucker
and Prager [5] in which effect, of couple stresses are also included:

L 2,]211’2 282‘1’2

e [1{ / (% D* + 1)] % (5.6)

the plastic rate of cubical dilatation is then expressed by the relation
¢? =3D (5.7)

where

To find an expression for the dilatation rate of soil, D, we consider the
case of incompressible granules where from (2.3) allowing only plastic defor-
mation we will get ] :

V=—Vv EE < (5-8)

Upon substitution of (5.7) with (5.6) into (5.8) we arrive at the expression
for D in the following form:

D= — 218215 — 39371 (5.9)

6. Concluding remarks

In the present paper, a micropolar theory of elastic-viscoplastic porous
material is developed and its application to soil mechanics is discussed. The
consideration of possible rotation of grains during the motion of granular ma-
terial, is the main contribution of the present study. Rotation of granules
appears to be quite compatible with the physics of the granular materials as
the experimental observations. Its consideration, in the present theory, gives
rise to the generation of couple stress tensor and anisotropic stress tensor.

It is conceived that the present theory of micropolar plasticity could be
an interesting model of soil. Since soil is a granular plastic material and
micropolar continuum theories have been proved to be a proper model for
structured materials. Further investigations in that direction are left for furture
studies.
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MIKROPOLARE THEORIE DER ELASTISCH-VISKOPLASTISCHEN
POROSEN MEDIEN

Zusammenfassung

Eine allgemeine Kontinuum Theorie fiir die elastisch viskoplastischen
pordsen Medien wurde unter bertickrichtigung der zuldssigen Drehung vom
Granulat formuliert. Die Grundgesetze des Gleichgewichtes wurden angegeben
und aus den thermodynamischen Betrachtungen konstitutive Gleichungen her-
geleited. Das Fliessverhalten der viskoplastischen pordsen Medien wurde im
einzelnen untersucht and die moglichkeit dessen Anwendung auf dem Boden-
mechanik auch uberprift.

MIKROPOLARNA TEORIJA ELASTO-VISKOPLASTICNE POROZNE
SREDINE

Izvod

U radu se proucava mikropolarna teorija elasto-viskoplasticne sredine
Glavni prilog ovog rada sastoji se u izvodenju jednaCina balansa 1 sistema
konstitutivnih jednacina na osnovu termodinamicke analize za slucaj kad gra-
nula ima rotaciju tokom kretanja. U radu se pokazuje da se na osnovu ove
pretpostavke na prirodan nacin dolazi do pojma naponskog sprega, kao i ani-
zotropnog tenzora napona. Prouceno je i viskoplasticno teCenje i mogucée apli-
kacije teorije na mehaniku tela. Takode je pokazano da izloZena teorija mozZe
biti interesantan model materijala tipa tla.
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