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1. Introduction

Nowadays the structural dynamic problems are usually solved by the finite
element technique. A structure is modeled by the finite elements which are
connected together in a certain number of nodes. The physica] characteristics
of structure are transfered through the finite elements to the nodes of model
forming in such a way a discretized system. The dynamic equilibrium of the
nodal forces leads to the matrix differential equation of the nodal dispiacements.
This equation may be solved by direct integration or it may be previously
transformed into the set of modal equations. In the case of transient vibration
the integration can be performed only numericaly. In order to obtain the
reliable results concerning the stability and accuracy, by a reasonable compu-
tation, a number of numerical integration methods has been established. Among
these the most commonly used are the Houbolt, the Newmark and the Wilson
® method, [1—5]. These mothods have been applied with success in linear as
well as in nonlinear dynamic structural analysis [6, §8].

Recently, a more mathematically oriented method has been in use for
general physical dynamic problems, [9]. That is so called stiffly stable method,
in which the second order dynamic equation is transformed into a first order
equation, [10, 11].

Since the dynamic response of a structure can be expanded into the
harmonic components, the idea of harmonic acceleration approximation in each
time step of the integration is worked out in detail in this paper, [12]. This
assumption is used for direct integration of the governing equilibrium equation
as well as for its modal transformation.

2. Dynamic Equilibrium Equation

In the finite element method the dynamic equilibrium equation may be
written in the matrix notation, [13],

[K] {8} + [C] {3} + [M] {5} = {F ()}, ()
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where [K], |C] and [M] are the stiffness, damping and mass matrices, respec-
tively; {3}, {5} and {§} are the displacement, velocity and zcceleration vectors,
respectively; and {F (¢)} is the force vector. The above matrices are symmetrical
as a reSult of the energy approach to the finite element method.

Equation (1) may be transformed in space into the modal coordinates
assuming the displacement vector in the form

{8} = [@] {X}, (2)

where [®] = [{d},, {d}s ... {d},) is the undamped mode matrix and {X} is the
generalized displacement vector. The natural modes {¢}; and the correspoding
natural frequencies «; are obtained by solving the eigenproblem of free un-
damped vibration,

(K] — o [M]) {d} = {0} (3)
Equation (3) is derived from (1) assuming {38} = {d} c>s ot

Substituting (2) into (1) and premultiplying (1) by [®]T, we obtain the
modal equation

(k] {X} + [ {x} + Iml {X} = {F @} (4)
[k] = [®]T [K] [®] — modal stiffness matrix,

where

[] = [®)T[C] [®] — modal damping matrix,

[m|= [®]T [M][®] — modal mass matrix,

{f ()} = [®]T {F(r)} — modal load vector. (5)
Matricas [%] and [m| are diagonal, while [c] is not diagonal in a general case.

From equation (4) for undamped natural vibration, we find relation
[k] = [w®m]. By its backward substitution into (4) the final form of the modal
equation is obtained

[0?] {X} + 2] E]{X} + {X} ={e O} (6)
where ol e
[w] = V@J — matrix of natural frequencies,

-
[E] = ] cij*f—j — relative damping matrix,
| 2 Vg my
{e(} = [{’;—Q} — relative load vector. @)

(A

If matrix [%] is diagonal, the matrix equation (4) and (6) respectively are split
into a set of uncoupled mode equations. This happens in some special cases
of definition of damping matrix [C], [14].
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3. Direct Integration of Equilibrium Equation

For given initial conditions {38}, and {3}, equation (1) may be integrated
step-by-step over the time intervals Ar = l;+; — t;. Starting from the fact that
at time ¢t =1¢; + 7

(8} = (8} + [ G} d~, ®)
and further

(3} = ) + [ 3} d~. )

it follows that the displacement vector {8} can be determined at any time ¢ if
the acceleration vector {§} is known within the time interval Az. For that pur-
pose let us assume the acceleration vector in the harmonic form

{8} = {u} cos At + {0} sin Ay, (10)
where {u} and {v} are unknown vectors, and A is an assumed interpolation

frequency, all constant within the time interval Az If {8} is known at time
t; and ¢;4,, than equation (10) written at these two time points,

[cas At;  sin Ay, ] f{u}} . {{S}i } (11)

Cos A+, sin Aty ] o} {8}

makes determination of {#} and {v} possible. Hence,

{{u}] W M [ sinAf;y, —sina t,-] {{}j}i }
{v})  sin2Az [— cosagy, cos h tud s3]
Furthermore, substituting (12) and ¢ = t; + 7 into (10) and utilizing some of

the fundametal trigometric identies, we finally obtain the interpolation acceleration
vector '

(12)

. sin At
_|_ 4
) 8k sin AA ¢

COS AT sin AT
cos AA ¢ sin AA ¢

(B} = cog 3A :( i e (13)

In that way the integration of equations (8) and (9) is made possible, that
results in -

' : cios AA ¢ / sin AT I — cosdz) .. 02 1 —cosAt ..
g i junns )i, 4 LoosdT
(8} = {3k A Cs A sin AA ¢ ) Ly Asin AA ¢ 8en
i cOsA iz /1 — cos At sin At — A\ ...
8 = {8} + v {5} + & ( % ) +
0 = 0%+ = {5} A cos AA ¢ sin AA ¢ (8
AT — sin AT ...
= 5 (14)

A2sin AA ¢
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At the end of A, expressions (14) yield
—cosAA ¢

; . 1 —cos)A L .. 1 ’
={§} + e {8kt :
{B}Hl {8}17 3 8 YA 7 {S}i S ain A ¢ {3}i+1

(8}t = (8} + A e{5},+ —;— (1—2A rotg M ) {5} +
1 ( VAN

bl — 1} {8}, 4,- 15
A% \sin AA ¢ ){S}Vr (2

Now, {§};+ and {§};+, can be determined explicitly from (15)
. a : B
{8}ih= % ({8}t — {3}) — ¢ {8} — d A e {8}

- (16)
. b b . .
($en= 1z @ — B} = - (81 — ¢ (8l
where
q = )iA—t (1 — cos A 1),
w
2 2
b=7\ a4 sin 2\A 1,
w
g l(sin)&At — M tcos A\ o),
w
d= i (2 — 2cos AA ¢ — A rsin A 1),
2w
w= Mt —sin At (17)

Furthemore, substituing (16) into differential equation (1) at time #;+, Wwe
obtain the following algebraic equation for determination of {8};+, depending

on {3}, {§}; and {§}: £
(5] {3}t = i (19)
where ’ :
a
[S] = [K] +E[C] + ‘—A?[MJ,
{f}i"’] ={F{l+ T+ [P] {8}1‘, + [0Q] {S}i + [R1 {5}
a b
[P]= K}[C] + Ap (M],

[0] = ¢ [C] + Ai (M, (19)
r

[R] = dAt[C] + ¢ [M].

Equations (18) and (16) represent the algorithm for determination of dynamic
response. '
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4. Integration of Modal Equation

Modal equation (6) can also be integrated by the harmonic acceleration
method if the generalized acceleration vector {¥} at time ¢ =, + 7 is inter-

polated between {X}; and {X};+, at time ¢, and r;4, = 1; + A respectively.
Thus, according to (13)

= COS OT sin ot . sin i
(&} = [cos At ( s ) J (& + [ bl J (Ko (20)
cos wA ¢ sin wA ¢ sin A ¢

where w; are the natural frequencies of system.

Following the prccadure from the previous chapter we obtain further,
analogously to (16),

4 f} [a] (X} — X3 — Tel (e, — A e [d] {&D

(e =33 1 (X — (00 — - 1) (&) — Lel (Do (21)
| r b s
where
la) = -m—A—F(l — cos mAz)J :
w
[6] = Colos sin @A tJ g
w

fefi= ,_l (sin WA 1 — wA rcos wA t)l s
w , :

1
oA rw

[dj=[ (2——2cosmAt—o)AtsincoAr)J,

[w]= [0A z — sin oA ], ‘ (22)

By substitution (21) into (6) at time z;4, the following matrix equation is
obtain for determination of {X},4,:

[S] {X}Hl = {q’}iﬂs (23)

where
[S]= -—l—é (le] +2|wAza] [E]), [e] = {
At

waAﬁJ

w

W = {o O} + [PHX} + [Q1 {X}; + [R1{ys

(P = -1 (18] + 2 [0A 0] 5],
Az
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[01= L (6] + 2 [wA rc] [E)),
At

[R] = [¢] + 2 oA ¢ d] [E]. ‘ (24)

Expressions (23) and (21) represent the algorithm for cilculation of dynamic
response by the mode superposition.

If the relative damping matrix [£] is diagonal, the mode equations are
uncoupled and the above algorithm can be presented in the explicit form.
This leads to the following recurrent formula for each mode:

{Y}z‘ﬂ = [T] {Y}l + A {L} @)+ (25)
where
= 1 : 1
(v}={Atx\,{L}=———a},f=—w'ArfcoswAy
Atz)"(} e+25wAta|b‘ w
b+2EwAra, b+2EwAtc, c+2 EwAtd

1 —aod A a, f b—a i (26)

[T]=-———AJ
e+280 Ata | _ 2 Ap b, —w? Al a—2E0lAth, —e® Ar® c—2 EwAta

The transfer matrix [7] and vector {L} are the integration and load operators
A
respectively, which depend only on argument wAt=2=x H]_f and damping

ratio &.

In the case of an undamped system the integration and load operators
are reduced to the simple form,

sin wA¢ sin wAz §in [RYAY _ cos wAr
wlAt | wAt PRL Y ot A
coswAr —1 sin wAz
T)= cos wAr—1 cos wAt + ;
[7] w? Ar® [RYAY:
— wArsin wAt — wArsin 0Ar — sip Wit + cos wAz
ol
[, S sin mAtl
| 02 A2 w® AL
1 — cos wAt
sin wAz
L OJAI

The same operators are found in this special case directly by the analytical
solution of the mode equation, [15].
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5. Stability and Accuracy Analysis
5.1. General

Reliability of the predicted structural response depends on the stability
and accuracy of the applied integration method. Stability may be unconditional
or conditional. An integration method is unconditionally stable if the solution
for any problem of initial coditions is bounded for the increasing time step
Atz from 0 to . The method is conditionally stable if the above only holds
provided the time step within a certain lower and upper critical value, i.e.
Ay < Ar < Agy,.

The direct integration and the mode superposition utilizing the harmonic
acceleration are two different methods and therefore the stability for each of
them has to be examined. In the former case frequency A and time step At
have to be chosen, while in the latter the natural frequencies ©; are known
and only a choice for Az has to be made.

5.2. Problem of small time step

Let us firstly consider the stability of the methods for small values of
arguments AAz and wAr respectively. If the values of these arguments approach
zero, the stability of the methods seems to become uncertain, because coef-
ficients (17) and (22) are led to the indeterminate form 0/0. Since this is the
same problem of the both methods it is sufficiently to analyse it in the case
of direct integration. The indeterminate form is an apparent singularity and
can be avoided by exanding the trigonometric functions into the exponentiel
series. iel

o 2n41
sin Mz = > (— l)”wl,
n=0 (2”‘}"1)'
; (28)
[=e} n
cos Me= > (— 1) —M-
n=0 (2 ﬂ)!
Thus, coefficients (17) yield
o0 2n4-1
a= . > (—-l)’”l_@m) ; 5
W u—1 (2 n)'
[} 2p4-1
b= 2 S (- 1)n+1.(7‘ﬂi,
I ey 2n—1)!
2] 241
L, i Z B2 1)n+12n (M) :
W pn=1 (2?’! o 1)'
fes) 2n41
= % (LU0
g 2n + 2)!
- (MAg)*n+1
w= — 29
,2:1 i (2n +1)! : 22
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Their limit values are finite,

a 3

lim b|_ )6
it 0% e fin-Y-8 £ (30)

d 12

Hence, the harmonic acceleration method is stable for small values of time
step At.

The limit values (30) are equal to the coefficients in the linear accele-
ration method which is conditionally stable, (16). This is obviously since the
limit of harmonic acceleration vector (13) is the linear vector when 2At
approaches 0 due to 2, i.e.

limo{é} > (1 - Ar) {8} + ATt {8}in (31)

A—>

Hence, the linear acceleration method is only an asymptotic approximation of
he general harmonic acceleration method.

5.3. Mode superposition method

In order to examine the stability of the methods for high values of
arguments 2Az and wAr respectively, we may consider problem of arbitrary
_initial conditions, that also includes the case when no load and damping
are specified. These parameters do not influence the overall stability of the
methods, but their omission simplifies the analysis. Since the stability of the
mode superposition method depends only on the chosen value of time step
At, let us firstly consider this problem. For a mode the problem is speci-
fied as

of'x +3=0, 2(0)=x,; 0) =1, ¥(0)=— o' x, (32)
with the analytical solution of free vibration
Xo .
= XC08 0L+ —SHaL (33)
©

If the integration method is stable than bounded difference between
results of the long time step integration, Az, = n Az, and n integrations for
short time Az should be obtained when n — oc. According to (25) we can

write for these two cases

{Yaln = [Thl {Yato (34)
and respectively
{Y}, = [T]"{Y},. (35)

Since
{Yn}o s [NJ {Y}Os (36)
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and
{Yn}n = AP [N] {Y}ns (37)
where A is the correlation factor and

N =

1
O (38)
nB

substitutions (36) into (34), and (35) into (37) and further into (34) lead to the
eigenvalue problem for determination of A

([T, — A [6],) {Y}o = {0}, (39)
where
[0), = [N] [T]* [N]. (40)

Depending on the values of Ay, k=1,2,3, we may conclude the following:
— if A =1, than [T], = [6],; the results are exact and consequently
the method is unconditionally stable,

— if the spectal radius p = max |Ay| < 1, matrix [T,] is bounded and
the method is unconditionally stable,
— if p> 1, [T,] is not bounded and the method is conditionally stable.

In the considered problem (32) ¥ = — w*x and, in order to simplify
the analysis, this relationship may be used for the linear transformation of
matrix [T] defined by (27). Thus, we obtain

cos wAt sin wAt 0

= _ wAr . (41)
— wAzsin @At cos wAz 0
— XA cos wAt — wAtsin wAr 0

As a result of this transformation, the eigenproblem (39) is reduced to its
minor

([T,) — A" [6],) {Y} = {0}, (42)
where
cos w n At ————Sin isd
(7,]) = onAt > (43)
— wn At sin wn At, cos wn At
and
1 o1 |€o8 oAt sin 0] * 1
(61, = [ ] o Ll (44)
0 n : B —
— At sin wAt cos wAt n

9 Mehanika 9
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Furthermore, it is easy to prove [T,]’ = [0],’ utilizing the fundamental identi-
ties of the trigonometric functions of a single argument and its multipliers.
Consequently, A, , = 1 and the method is exact in the considered case and
also -unconditionally stable in general.

The above conclusion may be substantiated by the fact that excctly the
same matrix [7] given by [41] can be derived directly utilizing the exact
solution (33) ot the problem. Extending problem (32) to the case of constant
load, i.e.

m2x+x= 1, x(0)=x0; x(0)=32'0, x(0)= 1_m2x0’ (45)

with the analytical solution

. 1

X = X,C080¢L + Mosinwe + — (46)
I3 w*

where 1/w* is the static displacement, the load operator (27) may be transfor-

med into the form

(1 coswhr
o® Ar? o’ Ar®
= sin wA 1 »
wAt
cos wAz |

The same operator is obtained by the analytical solution (46), and therefore
the method gives the exact results also in this case.

This means that in a general case solution of the problem is approximate
in each time step by the interpolation function, which represents solution of
the free undamped vibration and static displacement for the constant value of
load in the considered time step. As a result of this, the accuracy of the met-
hod dependes primarily on an adequate description of the load history by the
time subdivision.

5.4. Direct integration method

In the direct integration method the interpolation frequency A and time
step Az are chosen and therefore it is necessary to determine for which rations
w;/A and At/T, the method is stable and accurate enough. Since A # w; this
problem may be analysed taking a single d. o f. system into consideration
and assuming A # . Therefore, let us consider the same problem as in the
modal analysis, i.e.

'3 +§=0, 30 =3, §0)=375, §0)=0w"3 (48)

According to the algorithm in Section 3, the following reccurent formula is
derived in this case:

3

{Aliv, = [D]{A}, {A} = Az § ), (49)
A §
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where
1 b b c
[T"]=2—T_" — it Atda b -0t Ae a—w AL d}. (50)
WA +b | 2 APy — 0 APh — o' Affc
Employing the linear dependence § = — w3, the integration operator is

transformed and reduced to the minor

(51)

Sr T
(TS] = 1 [b ol A?c b ]

A2 4+ b lo® A (02 APd—2a) b—w®Af’c

According to (42) the eigenproblem for the stability examination is
formulated as

([Ta) — A" [6],) {A}s = {0} (52)

where [T3,] is represented by (51) for Az, = nAt while [0]," is given by
(44) and also by (43) since [0],' =[T,]’. The characteristic polynomial of
(52) is

Am 22 pAn 1, (53)
q
and its roots
- 1/,
iy [% . z']/l . %] , (54)
where

p=oczﬁgcos(a—ﬁ)+—;—aﬁ(tx—- B)*sina sin B +

+ (o® — B%) [a sin cos B + B sin B (1 — cos )],

g =0o’p 4 a (e’ — p*)sina,

a=AnlAt, B= wnA: (55)
2
Since —2)5 < 1 for any value of « and B within 0 and oo, we find further
A,, = cos o s Bl + isin ¢ t2km 3 (56)
n n
where
k=0’:hl,j:2..-,
- % g
PR A & M A (57)

P
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Hence, p = |A,,| = 1 and the method is unconditionally stable for any value
of w;/A and A¢/T). If A = « than A,, =1 and the method gives the exact
solution in the considered case.

“The accuracy analysis has been performed integrating equation (48) in
’ 2 ; .
a period T, = g for different values of parametres w;/n and At/T;, which

_are of practical significance. The difference between the exact and approximate
displacement at the end of period 7, is defined as error, Fig. 1. It holds
both the period and amplitude decays, which are of the same order. The
ampitude decay is result of the unconditional stability of the method. For
/A =1 the exact solution is obtained. The error increases by difference
|1 — w/x| and as well as by the value of At/T;. However, the error converges
by time to some finite value due to the unconditional stability of the method.

el —— T = ===
i 5 S B St i e s e S e e = g
T il | | 1 i 'Zl
[‘]hi 1 T 1 I I 1 i 'L L 2, e ,,‘/ e
€ = B e 11 1 I
) O | | S LS5 I ) __.h
| | l
10. ¥S00 — P
200 [ [5
S N Nt | L -
[ ]|
1. 1
I
— 250 L N-number of time steps
—+ 1
1 —
tion |
non i
0T 1T € =
' P | 1 ol —
| 33 3 =
0 0 S } 1 /[ Exact -
e I ‘ = % ximate =
s 5 s (S ) X -
il . i = =
B 25 ]
— EEHY :
f Rt i “\ ﬂ
| | | | | |
| | | |
| . L JLiig
'001.01 s m o3 ne 05 08 0708091 5 2 3 4 § 6§ T8 15 2 3 4. 5 68 1.840 ,111 20.
w,

Fig. 1. Error of the direct integration method

Applying the previous results of the accuracy analysis for the single
d. o f. system to the case of a multi d. o f. system, the most accurate
response is obtained if the interpolation frequency A is chosen equal to the
natural o, of the predominant mode. The predominant mode may be predicted
according to the load history or comparing the initial deformation of the
structure to the natural modes. If the predominant mode is variable, different
value of 2 and As may be chosen, for each time step.
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Looking through the modal analysis, the predominant mode is integrated
very reliably (or exactly if constant load and no damping are specified),
while the integration of the other modes includes some error. According to
Fig. 1., the mode error ¢; increases by ditference {l = coj/l[. On the other
hand, contribution of each mode to the total response, defined by the maxi-
mum value of displacement for a period of time, A; = max |x;|, decreases
by the above difference. Therefore, resulting error ¢ of the response is smaller
than the maximum mode error in the frequency domain, Fig. 2,

2 4j 5
o I (58)

> 4

i=1

S

Modal spectrum

—

p e

--._.__\\ ;
LTI e | AT
0 A=W, w, w

Fig. 2. Error spectrum

In the time domain the mode error accumalates. In each period T its
value increases for ¢;, (Fig. 1. if no load and damping are specified). At
arbitrary time, we may write,

g () =1— (1 — g)fITel.

Hence, the total error (58) is time dependent. Therefore, the modal spectrum
decreases by time and becomes more narrow. When ¢— oo than g (r)—1
and all modes disappear besides the static displacement of the predominant
mode which surely remains if no damping is specified.

In the mode superposition method a limited number of the first modes
are taken into account. The highest natural frequency of the chosen modes
usually exceeds the frequency of the predominant mode for double. In that
case an optimal integration concerning the accuracy and computation, may
be performed taking Az = 73/10, that causes the maximum mode error of
3.5%, Fig. 1.
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6. Illustrative Example

6.1 Formulation of the problem

Application of the presented integration methods assuming harmonic
acceleration is illustrated by the example of a two d. o f. system without
damping, which is solved in (5) analytically and by the most commonly used
integration methods. The differential equation of the system is

[K]{3} + [M] {5} = {F}, (a)
where
0-[ 1w oes(l o

The equation has to be integrated for the initial conditions {3}, = {0} and
{8}, = {0}, that according to (a) implies

{8} = [M]~* {F} = {13} (©

6.2. Natural vibration

In the case of natural vibration the assumption {8} = {}b} sin ¢ substi-
tuted into equation (a) leads to the eigenproblem

([K] — ® [M] {d} = {0}. (d)
The eigensolutions are
w,=V2, T,=445,
(e)
w,=V5, T,=28,
1

‘}, @) ={" 2\, (£)
1

{f-b}={1

6.3. Exact solution of the dynamic response

The exact solution of the dynamic response may be obtained analytically
by the mode superposition method. The corresponding mode equations are
uncoupled

®
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Their solution consist of the homogeneous and particular integrals, 1l

X, = All sin w, I + A12 Cos W, s i:
(h)

: 4
Xy = Ay SiN Wy & + Ay COS O £ + —.

Coefficients A4;; are determined satisfying the initial conditions, which for the
generalized coordinates yield {X}, = {0} and {X}, = {0}. Thus, we find

g —:5;(1 — COS W, 1),

: (i)
x, = — (1 — cos w, 7).
3
Furthermore, applying relationship (2),
5 23
3, =1 — —cosw, t + — Cos w, &
1 3 1 3 2
0))

5
3. =3 — —Ccosw, t — — COS Wy L.
2. 3 1 3 2

The dynamic response at different time steps is given in Table 1 and shown
in Figs. 3 and 4.

6.4. Direct integration

Let us integrate equation (a) for 12 time steps taking At = T,/10=0.28.
Since the contribution of both natural modes to the response (j) is of the
same order, it is reasonable to define the interpolating frequency A as the
average value of the natural frequencies. Hence,

A= % (0, + ;) = 1.825.

For the integration parameters the following values are obtained:

A Az = 0.511, = 2.973,
sin AAz = 0.489, b = 5.804,
cos Mt = 0.872, ¢ = 1.973,

w = 0.022, d = 0.534,

b 154.062 — 2
S] = [K] + — [M] = :
b T W T [— 2 78.031]

The values of a, b, ¢ and d are close to the limit values (30).
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The algorithm for the response calculation is the following :

Bh= 0 =0 Gh=| ],

ets = (F @heta + 2 M1 8 + 2 [M] §, + ¢ [M] 5, =
At At

SR R : :
{ 10} i, [o 1] (74.031 {8}, + 20.729 {§}, + 1.973 {§},»

6.493  0.1664

{3}t = [SI7 {f}i+, = 10°° [o 1664 12.819

]{f}ih’

whﬁ=i«mﬂ—wm—cwh—dmwh=

= 10.618 ({8};+, — {8},) — 1.973 {5}, — 0.149 {5},

(B = 1 @hon — 00 — = {3k — o (3 =
= 74.031 ({8};+, — {3}) — 20.729 {§}, — 1.973 {5},.

The results of the numerical calculation are given in Table 1 and they are
also shown in Figs. 3 and 4.

The relative mode errors depend on the following parameters:

O o773, =128 2= 00814,

A A T

From the diagram shown in Fig. 1, we find ¢, = 1.5% and ¢, = 1.4% for
a period of time T, and T, respectively. The integration is performed up to
i, = 0.76 T, = 1.2 T,, that gives ¢,,;, = 1.14% and s,,, = 1.689%, respectively.
According to the analytical solution (i), the modal contributions to the res-
ponse are A, = 5/3 and A4, = 4/3. Using (58) we find the resulting response
error, € = 1.4%. The error caused by the load integration is omitted.

6.5. Mode superposition

Modal equations (g) are integrated for the same time subdivision. The
procedure is similar to the previous for the direct integration. Due to large
number of numerical operations, the calculation has been perfomed by means
of computer. The results are also given in Table 1 and shown in Figs. 3
and 4.



137

Harmonic Acceleration Method for Dynamic Structural Analysis

e | T | 97 yT'E 0y | Ly | 1€s £'S Z0'S | sov | 08T | SvI| T6E0| %@ o
2wt | obz | o8z | 98T | 097 9 & 0S'T | €260 | 19v0 | L910 | I€0°0 0| 1@
. 6ez | €z | 90c | z8¢€ 9% | 81°¢ 1 g8y | z6€| ¥9T| +ver | 99€0| o
69 . . . . . 0 UOSTIA\
bS'1 ecz | | . | 9T | 912 bs'1 | Ts6'0 | 06v°0 | 9610 | 7SO0 | 9000 @
ez . 06T | ¥9¢ | 8¥¥ | €IS vE'S s6v | 00% | 89T | SE€1| t9g0| @
vy I fro b 4 YIRUWIMIN]
0¥ 1 gzz | ss8z | oo | oLz | €Tz 8T | 1960 | s8v'0| 6810 | 0so0| LooO| Q
" 09 | vsz | stz | Lee | L1y | o6 97°S 208 | vI'v| €8T| SI| T6E0| 3¢ S3OUIBIP
701 v0'Z e ¥ LK 167 | ovz oLl Z0°T | L8Y'O | 8910 | T€0°0 0| @ i
s 1267 | sevz | zeez | Levs | 106y | €10°s | 60€'S | 910°S | OII'Y | SSL°T | OIP'T | 8ISE0| @R 1a
260'T | 180 | €LLT | 6z0°€ | 9¥8T | 9€€°T | 999'T | €I0°T | THOS'O | SO61°0 | S9¥0°0 | 6000 @ FAGBENDG
& 68v'z | ¥8b'z | 908'T | LSt | LLzy | 986 | 06T'S | 966% | v60'¥ | 18LT | TIVI | 618€0| =R e .mwm
11 | 161z 1 908z | zsoe | 198°T | 8€€T | LS9T | €966°0 | 098°0 | 9SLI'0 | 18€0°0 | 1ST00°0| @ pue 10exXy
%2 I o1 6 8 L 9 s b ¢ z 1 | dag poyIoW
Jo11g oI

82°0 = 7y ‘walsAs ‘J 0 ‘p omi jo asuodsay [ 2190




138 1. Senjanovié

1]
Exact
31
27
Houbolt

1

i
= SN e -1
ol 1 2 3 4 5 2 6 7 8 9 10 " 124t

Fig. 3. Response 3; of two d. o f. system
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6.6. Correlation analysis

Response of the two d. o f. system determined by the direct integration
and the mode superposition methods assuming the harmonic ccceleration is
compared to the exact solution in Table 1 as well as in Figs. 3 and 4. The
mode superposition method gives the exact solution since in the considered
example the constant load and no damping are specified. In the case of
direct integration some discrepancies between the approximate ond exact
solution exist.

In Table 1 and Figs. 3 and 4 the results obtained by the finite dif-
ference, the Newmark, the Wilson § and the Houbolt method are also inclu-
ded, [5). Each of these methods applied for direct integration and modal
integration gives the same results, against the harmonic acceleration method.

In order to evaluate the above methods, the error of the solution may
be defined as the mean value of the relative discrepancies between the
approximate and exact solution. Thus, for the both d. o f. we can write
8y — Su

—_—

81

The first two time steps are excluded from the analysis since the small
response at these steps causes large relative error. The values of &, given in
Table 1, point out different degree of accuracy of the analysed integration
methods.

.

12

l 2
S Ty

=3

The resulting error of the direct integration method assuming harmonic
acceleration, € = 1.6%, is somewhat higher than the predicted value ¢ =1.4%,
because the error of the load integration is not taken into account in the
latter case.

In order to verify the stability of the solutions obtained by the consi-
dered methods, which are all unconditionally stable besides the finite dif-
ferences, the same example is solved taking the large value of time step into
account, Az = 10 T, = 28. The results, given in Table 2, are discussed as
follows.

The mode superposition method gives the exact solution. The results of
the direct integration method are inaccurate. However, they are bounded up
and down by the maximum and minimum value ot the response respectively.

The limits are determined according to the analytical solution (j), — -% -

10 g 2
% 8, g-g and 0 < 8, < 6. Thus. the solution indicates order of the response

magnitude.

In the case of the finite differences the results approach to infinity as
a consequence of the conditional stability. Namely, the method is unstable if

At s Tﬂl.
The results of the Newmark method exceed the bounds of the exact

solution to some extent and seems to converge to the static solution 3, = 1 and
8, = 3, which is, of course, within the bounds of the exact dynamic response.
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The results obtained by the Wilson 6 method exceed the bounds of the
exact solution considerably.

In the case of the Houbolt method the results approach the static solu-
tion extremly rapid.

7. Conclusion

Since the dynamic response of a structure may be expanded into the
harmonic series, it seems that the best approximation of the response may be
obtained also by the harmonic interpolation function. Concerning the numerical
methods for solution of this problem, the assumption of harmonic acceleration
in the case of direct integration of the equilibrium equation and its transfor-
mation into the set of modal equations, results in two different numerical
methods. The both methods are unconditionally stable and very accurate com-
paring to some other methods, "especially the mode superposition version which
gives the exact solution in the case of undamped system with a constant load,

Physical meaning of the methods is maintained through all the derivations.
That makes possible a proper choice of the integration parameters and checking

of the results. This is an advantage of the methods for successful engineering
application.
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METHODE DER HARMONISCHEN BESCHLEUNIGUNG ZUR
DINAMISCHEN ANALYSE DER KONSTRUKTIONEN

Zusammenfassung

Die harmonische Beschleunigung ist fiir jeden Schritt beim Integration
von Differentialgleichungen des Gleichgewichts, und ihrer Modaltransformation,
angenommen. Als FErgebnis bekam man zwei Methoden der nummerischen
Integration; die direkte Methode und die Methode der Normalfunktionen.
Beide Methoden sind stabil und in Vergleichen mit heutzutage am meisten
verwendeten Methoden sehr genau.

METODA HARMONIJSKOG UBRZANJA ZA DINAMICKU ANALIZU
KONSTRUKCIJA

Tzvod

Harmonijsko ubrzanje je pretpostavljeno u svakom koraku integracije dife-
rencijalne jednadzbe dinamifke ravnoteZe konstrukcije, odnosno njene modalne
transformacije. Kao rezultat toga dobivene su dvije metode numeri¢ke integra-
cije, tj. direktna metoda i metoda superpozicije normalnih funkcija. Obe metode
su bezuvjetno stabilne i vrlo toéne u usporedbi s metodama koje se danas naj-

¢e$Ce primjenjuju.
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