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1. Introduction

By plastic anisotropy we mean the anisotropy of hardening. A general ani-
sotropic elastic-plastic deformation would include both, elastic and plastic ani-
sotropy. In this analysis oe restrict ourselves to materials which are elastically iso-
tropic in its virgin configuration and which preserve that isotropy when plastically
deformed. For many materials this is indeed so [5], because the basic crystal struc-
cture, which determines the elastic properties of the material, remains essentially
intact after dislocation generation and migration which cause plastic flow. We,
however, allow such materils to have the yield surface which expands during the
course of deformation in the anisotropic manner (anisotropy of hardening). Elastic-
plastic deformation of such materials is then a deformation with elastic isotropy
and plastic anisotropy. This author shortly calls such deformation an elastic-pla-
stic deformation with plastic anisotropy.

Most of the work related to anisotropic plastic deformation [6, 7, 8] is con-
cerned with the handling of anisotropy of harding, i.e. with the mathematical
representation of the way in which the yield surface expands during the course
of plastic deformation. Althought that still presents perhaps the most important
open problem in the theory of plasticity, this work is not orieneted toward that
difficulty. It rather has as a goal to establish the global structure of the constitutive
law for elastic-plastic deformation at arbitrary strains valid for any proposed ani-
sotropic yield function. The result obtained here shows that the final structure of
the constitutive law for elastic-plastic deformation with plastic anisotropy is glo-

baly the same as the structure established in [2—4] for isotropic elastic-plastic
deformation.

2. Kinematics

Consider the body in its initial (stress free) configuration $o. Let it be de-
formed under the action of some external agency into the configuration B, such
that the motion (deformation) from By to B, is given by a single valued mapping

¥ =x%(X1 2.5

which carries the material particle from its initial position X into its current po-
sition ¥ at time ¢ (Fig. 2.1).
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Fig. 2.1

Let the motion 7 involve elastic-plastic deformation. Observations have shown
such materials to be ,,simple” in the continuum sense, i.c. the deformation will
be present in the constitutive equations only through the deformation gradient
matrix
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Following [1], we now introduce the intermidiate configuration f by destressing
the whole body from its current configuration By and by reducing the temperature
to the initial value. The configuration :f; then compises pure plastic deformation,
for thermal expansion and elastic strain cornponents are both zero. One can then
establish at each point of the deformed body the decomposition

1‘1 = 1:(1 I:ﬂ (2.3)

of the deformation gradient F into the pure (thermo-) elastic part F which corre-
sponds to mapping from f; to B and pure plastic part F, which corresponds to
mapping from Bo to By. The decomposition (2.3) 1s not unique, for we can always
have

F=F,Fp=(F.Q) (QF Fp) =FeFp (2.4)

for an arbitrary orthogonal Q. However, for elastically isotropic bodies, the above
choice of F, is immaterial and we can choose that F, which is the most convinient
for us. We therefore choose F, corresponding to destressing without rotation, i.e.
B;= | angd

F.=V, (2.3)

IV, being the symmetric left strecth tensor and R, the orthogonal rotation tensor
from the polar decomposition theorem F, = V.R,. The decomposition (2.3) con-
sequently becomes

F = Vg Fl) (26\
Consider now the particle velocity in the state X
X
= 9% (2.7

ot X
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The velocity gradient of the total deformation is then

L="=="~"==FF1 (2.8)

where the superposed dot denotes material derivative, time diferentiation at fixed
X. Substitution from (2.6) then gives

L=Ly+ VeLyp Vi* (2.9)

where L, = V,V;! and L, = F,F,! are the velocity gradients corresponding to
the elastic and plastic part of deformation, respectively. Taking symmetric part
of (2.9), we obtain

D =D, 4 (VeLy Vil)s (2.10)

where D is the symmetric part of L = D -+ W called velocity strain, D, is the
symmetric part of L, and subscript s denotes the symmetric part. Further L, =
= Dy -+ Wp, Dp and W, being the symmetric and antisymetric parts of Lj, and
(2.10) becomes

D - Dg J[‘ (Vg Dp Vg_l)s + (Ve Wfp Ve_1)3 (2.11)

Now, the first and third term on right hand side of (2.11) can be combined to give
1 v

Dy + (Ve Wp Vel)s = ?V;l C. Vi1 (2.12)

where C, = VI V, = V2 is the right Cauchy-Green deformation tensor, and (V)
stands for the Jaumann derivative with respect to the plastic spin W), i.e.

M=C)=Wp( )+( )Wy (2.13)
Denoting (2.12) shortly by

1 v
D, = 5 Ve, Vit (2.14)
we have from (2.11)
D =D, + (Ve Dy V1), (2.15)

In the case of isotropic hardening [2—4], the principal directions of plastic
stretching D, coincide with the principal directions of stress, and since I, has
also the principal directions coincident with those of stress, matrices V, and D,
in (2.15) are commutative and IV, and V;1 cancel each other. Hence, for the case
of isotropic hardening (i.e. isotropic yield condition), (2.15) reduces to

which decomposes the stretching tensor D into the elastic part D, and plastic part
D, and which presents the basis for the formulation of the rate-type elastic-plastic
constitutive law [2—4].

However, when the yield conditionis not istoropic, i.e. when we allow the
existance of the Bauschinger effect and the anisotropy of hardening, the principal
directions of stress and plastic stretching are not coincident, hence matrices 1,

7 Mehanika 8
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and Dy in (2.15) are not parallel. (commutative) and (2.15) doesn’t reduce exactly
to (2.16). Nevertheless, it turns wut that even in the case of anisotropy of hardening,
the relation (2.16) is an appropraite kinematical relation to base the theory on.
Indeed, for clastic-plastic deformation of metals, the finite elastic strains are pre-
dominantly dilatational, since an increase of elastic shear-strain components beyond
the elastic limit (~10") produces plastic flow. Consequently, the stretch tensor
Ve can be written as

Ve =v (I + g) (2.17)

where v > 1 is a scalar (volume compresion ratio), I is the identity matrix, and
e is a ,small” matrix (| g5 <€ 1) due to elastic shearing. It then follows that

I
Vel = — (1 —¢) (2.18)
?

and
(VeDyp Vil)s >~ Dp —e Dpe (2.19)

But the second term, on the right hand side of (2.19) is two order of magnitude
smaller then the first term, and therefore

(Ve DpVil)s = Dy (2.20)
1.6
D ~D, + Dy (2.21)

In the case of infinitesimal elatic part of deformation, we can imidiatelly
put V. = [ in (2.15) to again get (2.21), without danger of loosing any important
feature of the analysis, since all differentiation has been already done and rate
measures earefully established. We also note that order of approximation involved
in substituting I, = I in (2.15) for infinitesimal elastic deformation is of the same
order as in the approximation }, = I normally made in the structure of the con-
gtitutive law for 9, corresponding to infinitesimal elasticity.

Therefore, even with plastic anisotropy, an accurate theory can be based
on the decomposition
D =D; + Dy (232)

of the total velocity strain D into the elastic part 9, and plastic part Dp."

Our objective is now to use (2.22) and to establish the structure of the con-
stitutive law for materials in elastic-plastic deformation with plastic anisotropy.

1y Alternatively, one can establish the exact relation

Q)¢ e np
Dy = iDz'j 2 ijke Dke

with
1 = _
L ijke = '2‘ (Vi Vej] 4 V:'kl Ves)

but there is no need in keeping the tensor ., since

Eijke a4 8”: Sej
and hence
D E fj)s *}' Dp-
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3. Constitutive Laws
The elastic deformation F, is governed by the classical finite elasticity law [9]

r=2f g2t
Po 0 Ce

where T is the Cauchy stress tensor, ', = WV, (C, 0) is the Helmholtz free energy
per unit initial volume, C, = F? F, is the right Cauchy — Green deformation
tensor, 0 is temperature, and p and p, are the densities in configurations J%; and
T4, respectively. (We assume the incompressibility of plastic flow, hence the den-
sity in configuration  is the same as the initial density p, in the configuration 3.
We also assume [8] that the elastic properties of material are not influenced by the
previous plastic flow). But we have chosen F, = V, and (3.1) becomes

¥y

e

FT

1=20C, (3.2)

where = = °° T is the Kirchhoff stress and V', is an isotropic function of C,=V73.

P
The law (3.2) is the constitutive law for the elastic part of deformation. It is seen
to be in the finite form as one-to-one relation between the deformation C, and the

stress T.

The structure of the constitutive law for the plastic part of deformation is
quite different. Plasticity is a fluid type phenomenom which is governed by a
rate (incremental, flow) type relation which involves the strain rate rather then
strain in its structure. Restricting ourselves to the case of time-independent plasti-
city (i.e. no rheological, viscous effects), the law governing the plastic part of (iso-
thermal) deformation with arbitrary hardening, takes the form [10,11]

1%,=L(ﬂz:3)iz (3.3)

j’ 0T ot

where ¥ is a scalar which contains information about the history of deformation,

and ~ ‘
f=7@RprRp, Cp, 4) (3.4)

is the yield function, 4 being the set of internal state variables [12,13], C, the plas-
tic deformation tensor and R, the orthogonal rotation tensor, such that

RpRl =W (3.5)
where W = asym L is the spin tensor.

The law (3.3) can be rewritten as

. Dy = Ap[7] (3.6)
1.€C.
with
L of  of
A= - T (3.8)

_7 () Tij () Tmn

=1
.
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4. Rate-Type Constitutive Law for Elastic-Plastic
Deformation with Plastic Anisotropy

The established kinematic relation (2.22) for the rate measures of the defor-
mation will be the basis for the assembling of elastic and plastic constitutive laws,
(3.2) and (3.6), respectively, into a single law. By taking the Jaumann derivative
[14] of (3.2) with respect to the total spin IV

@=C") —W{ J+{ JW (4.1)
we obtain (for details, see [2—4])
T = 11, [D] (4.2)
where (droping the index ,,e”” for the moment)
) “ijmn = Pij af Ea{ﬁ mit (\4-3)
with
N )ll." ()Ell"
Qijup = 2 [%c ¢ — + Cyy ( - ) ] (4.4)
0Cgy 0C?% kjap
and
EGBHHI = Sam CnB -1 8(3n Cam (4-5)
Inverting (4.2) for 9,, we obtain
‘J)e = f\g [T] (46)

which is the desired form of the rate-type constitutive law for the elastic part of
deformation.

Now, we substitute the laws (3.6) and (4.6) into (2.22) to get

. D = (A, + Ap)[7] (4.7)
1:C o
D = Alq] (4.8)

This is the rate-type law for the materials under the conditions of elastic-plastic
deformation with plastic anisotropy. It gives the velocity strain D as a function
of the stress rate 7 and the tensor (operator) A which is a function f the current
state (i.e. stress and other quantities which define the state). Inverting (4.8) for
<, we obtain the equivalent form of the rate-type constitutive law

2 = (D] (4.9)

We observe that the laws (4.8) and (4.9) have the same global structure as
the laws established in [2—4] for the elastic-plastic deformation with plastic iso-
tropy. The difference is, of cource, in the different nature of the yield function
corredponding to plastic anisotropy and plastic isotropy, as seen by comparing
the equation (3.4) here, with the corresponding yield function of isotropic harde-
ning utilised in [2—4].

The constitutive laws (4.8) and (4.9) for the elastic-plastic deformation with
plastic anisotropy are in this form explicitely established for the first time in this
paper. They are not restricted to small strain or small rotations, as is usually the
case with the other theories of plasticity, and the only major restrictions are the
elastic isotropy and time independence. Extensions of these (isothermal) laws to
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nonisothermal case is a straight forward procedure analogous to one which was
performed in [15] for the isotropic elastic-plastic deformation.

In the final part oa this paper we consider an important special case of ani-
stropic hardening and show that the corresponding constitutive law has nature of
here established general law (4.8) or (4.9).

5. Kinematic Hardening Case

The simplest case of the anistropic hardening is the case of kinematic har-
dening [6,8] in which the yield surface does not change its size or shape but merely
translates in stress space 7;; in the direction of its normal. If the initial yield surface
is defined by

flr5) —C=0 (5.1)

where f is an isotropic function of 7, and ¢ is the radius of the yield surface, then
the kinematic hardening assumption means that the new yield surface is given by

flriy — o) —C=0 (5.2)
where #;; are the coordinates of the new centre of the yield sufrace, and f in (5.2)
has the same dependence on (tj;—a;;) as f in (5.1) on 74. In particular, f in (5.2)
is therefore an isotropicfunction of (t;;—a4;). To specify the position of the center

of the yield surface in the cource of deformation we consider «;; as the internal
state variables and propose for them the evolution law [10]

aij = Afmn Dmn (5.3)

where the tensor :Eﬁjmn depends on the current state of material. (Almost all ap-
plication of (5.3) have been based on taking Afmn = adim djn, where ,,a” is a
constant).

Now, the plastic stretching D, obeys the law

1 /o \ o
D, = (.f : T)--f (5.4)
F \or 0T
where
of of
f =g ———— (33
0 %5 O The )

as can be easily shown similarly to the procedure in [10]. But, due to the isotropic
nature of function f, the material derivative of = in (5.4) can be replaced by the
Jaumann derivative, and (5.4) becomes

1 (0f o\ 0
D, = ( I T) of (5.6)
I Yor ax
or .
Dy = Ap (]
with

ymn
i () Lij Ij Lmmn
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Substitution of (4.6) and (5.7) into (2.22) leads to the final form of the constitutive
law tor elastic-plastic deformation with kinematic hardening :

D = A[x] (5.9)

= L0 (5.10)

which is seen to be the same structure as already established by the equations
(4.8) and (4.9) for the general anisotropic hardening.
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LA DEFORMATION ELASTO-PLASTIQUE AVEC L’ANISOTROPIE
PLASTIQUE

Résumé

Nous analysons ici les matériaux conditions de la déformation élasto-plasti-
que avec l'isotropie élastique et anisotropie plastique. L’anisotropie plastique signi-
fie I'anisotropie de la fonction du coulage. Le but de ce travail est I’établissement
de la structure globale la loi constitutive pour les matériaux élasto-plastiques aux
conditions de la anisotropie plastique. Le résultat obtenu indique que cette struc-
ture ne difféere pas formalement de la structure qui correspond a la déformation
élasto-plastique avec Disotropie plastique [2—4]. Cette conclusion est obtenue ici
de maniere explicite pour la premiere fois.

ELASTO-PLASTICNA DEFORMACIJA SA PLASTICNOM
ANIZOTROPIJOM

Izvod

Pod plasti¢nom anizotropijom mi podrazumijevamo anizotropiju oévrscavanja.
Potpuno anizotropna elasto-plasticna deformacija bi bila deformacija i sa elasti-
¢nom i sa plasti¢nom anizotropijom. U ovoj analizi mi se ograni¢avamo na materijale
koji su elasti¢no izotropni u svojoj podetnoj konfiguraciji i koji ocuvaju tu izotro-
piju i nakon plasti¢ne deformacije. Mi, medutim, dopustamo da takvi materijali
imaju povrsinu tecenja koja ekspandira u toku deformacije na proizvoljan anizo-
tropan na¢in (anizotropnost oévrs¢avanja). Elasto-plasti¢na deformacija takvih
materijala je onda deformacija sa elastiénom izotropijom i plasticnom anizotropijom.
Autor ovog rada naziva kratko takvu deformaciju elasto-plastiCna deformacija sa
plasticnom anizotropijom.

Cilj ovog rada je da se formira globalna struktura konstitutivnog zakona za
elasto-plasti¢an materijal pri kona¢nim deformacijama u uslovima proizvoljne
plastiéne anizotropije. Dobijeni rezultat pokazuje da se ta struktura formalno ne
razlikuje od korespodentne strukture za elasto-plasticnu deformaciju sa plasticnom
izotropijom, formirane u prethodnom autorovom radu [2—4]. Ovo se pojavljuje
ekspicitno dokazano po prvi put u ovom radu.
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