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1. Introduction

The main objective of this work is to establish the rate (incremental) type
constitutive law for non-isothermal elastic-plastic deformation of metals at finite
strain. This is done be extanding the analysis presented in [2—5] which is concer-
ned with the isothermal case. The result obtained here, i.e. the constitutive forms
(4.15) and (4.16), appear to be established for the first time in this paper. They
are not restricted to small strains and only restrictions imposed on them are iso-
tropy requirements and time independence, as explained in the body of the paper.

2. Kinematics

Consider the body in its initial (stress free) configuraion B .Let it be defor-
med under the action of some external agency into the configuration $; such that
the motion (deformation) from $Bo to B is given by a single valued mapping

x=%X(X0 (2.1)

which carries the material particle from its initial position X into its current po-
sition ¥ at time ¢ (Fig. 2.1).

Fig. 2.1
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Let the motion /£ involve elastic-plastic deformation. Observations have shown
such materials to be ,,simple” in the continuum sense, i.e. the deformation will
be present in the constitutive equations only throught the deformation gradient
matrix

F="= (2.2)

Following [1], we now introduce the intermidiate configuration /#; by destressing
the whole body from its current configuration $B; and by reducing the temperature
to the initial value. The configuration /2, then comprises pure plastic deformation,
for thermal expansion and elastic strain components are both zero. One can then
establish at cach point of the deformed body the decomposition

1" —_ 1"9 1"]} (23)

of the deformation gradient /7 into the pure (thermo-) elastic part F, whoch corre-
sponds to mapping from % to $; and pure plastic part I, which corresponds to
mapping from Bo to By. The decomposition (2.3) is not unique, for we can always
have

F=F, Fp - (1"63 Q) (QT Fp) = FeFp (2-4)

for an arbitrary orthogonal Q. However, for elastically isotropic bodies, the above
choice of F, is immaterial and we can choose that F, which is the most convinient
for us. We therefore chose F, corresponding to destressing without rotation, i.e.
Ky = 1 afd

Fe =1, (2:5)

Ve being the symmetric left stretch tensor and R, the orthogonal rotation tensor
from the polar decomposition theorem I, = V,R,. The decomposition (2.3) con-
sequently becomes

1—: - Vg I;‘p. (2‘6)
Consider now the particle velocity in the state X
0x
g =22 2.7
ol X

The velocity gradient of the total detormation is then

oV ov 0X .
L:—"‘:—"l-—"izf;'f:'l :8}
0x  9Xox (

where the superposed dot denotes material derivative, time differentiation at fi-
xed X. Substitution from (2.6) then gives

L=TIp 4 ¥ 15 VA (2.9)

where L, = V.V, ! and L, = FpF,! are the velocity gradients corresponding to
the elastic and plastic part of deformation, respectively, Taking symmetric part
of (2.9), we wbtain

D = l)p 1 (lrc 1.4]) ]4:.])‘\' K:In\
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where is the symmetrei part of L = D 4 W called velocity strain, D, is the sy-
mmetric part of L, and subscript s denotes the symmetric part. [urther L), =
= Dy + Wy, Dp and W, being the symmetric and antisymetric parts of L, and
(2.10) becomes

D =D, + (Ve Dp Vil)g + (Ve Wy Vel)s (2.11)
Now, the first and third term on right hand side of (2.11) can be combined to give
| v
De 'I' (VngVe 1)3 = ’) Vel Cg I/e 1 (212)
where C, = V&V, = V3 is the right Cauchy-Green deformation tensor, and (V)
stands for the Jumann derivative with respect to the plastic spin W), i.c.
M =0)=Wp( )+ Wy (2.13)
Denoting (2.12) shortly by
-
5D, = ; el €70 (2.14)
we have from (2.11)
D =9, + (Ve Dp Vel)s (2.15)

We shall further restrict ourselves to the case of isotropic hardening (plastic iso-
tropy), when the principal directions of plastic stretching D, coincide with the
principal directions if stress. Since V, has also the principal directions coincident
with those of stress, matrices Ve and D, in (2.15) are commutative and }, and
I, cancel each other. Hence, for the case of isotropic hardening (i.e. isotropic
yield condition), (2.15) reduces to

D = ﬂ)g *%’ Dp (216)

which decomposed the stretching tensor (velocity strain) D into the elastic part
D, and plastic part D,. This relation, derived for the first time in the author’s
PhD thesis [2], presents the basis for the formulation of the rate-type elastic-plas-
tic constitutive law.

3. Constitutive Laws

The elastic deformation I, is governed by the classical finite elasticity law [9]
: e

T=22F"°F (3.1)
PO () Cg

where T is the Cauchy stress tensor, V', = ¥,(C,, ) is the Helmholtz free energy
per unit initial volume, C, = I F, is the right Cauchy — Green deformation tensor,
f) is temperature, and g and go are the densitiles in configurations B, and /#;, respecti-
vely. (We assume the incompressibility of plastic flow, hence the density in confi-
guration ‘#; is the same as the intial density po in the configuration $o. We also
assume [8] that the elastic properties of material are not influenced by the prevoious
plastic flow). But we have chosen F, = 1/, and (3.1) becomes

g
’:‘:2(_: ()I(r

3.2
‘3G (3.2)
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where v =(po/p) 1" is the Kirchhoff stress and V', is an isotropic function of €, =
= V.. The law (3.2) is the constitutive law for the elastic part of deformation. It
18 seen to be in the finite form as one-to-one relation between the deformation C.,
and the stress .

‘The structure of the constitutive law for the plastic part of deformation is
quite different. Plasticity is a fluid type phenomenon which is governed by a rate
(incremental, flow) type relation which involves the strain rate rather then strain
In its structure. Restricting ourselves to the case of time independent plasticity,
the law governing the plastic part of deformation in our theory, takes the form
[1,6,7]

1 /of . of .\ o :
Dy = fi'cf fo / (3.3)
1
J lax 70 a7
where f =g (1) —¢ = 0 is the yield function, ¢ representing the hardening, ,,:”’
stands for the ,trace”, ,,.”” is the material derivative, Dy = sym (FpF,1) is the plas-
tic straching tensor, and ¥ is a slalar which contains information about the history
of deformation and which for the time being is not of interest to us in this analysis.

Our objective is now to combine the elastic law (3.2), which is the finite
(not rate-type) form, with the plastic law (3.3), whichis in the rate-type form,)
into a single relation — the constitutive law for non — isothermal elastic-plastic
deformation.

4. Rate-Type Constitutive Law for Non-Isothermal
Elastic-Plastic Deformation

The established kinematic relation (2.16) for the rate measures of the defor-
mation will be the basis for the assembling of elastic and plastic constitutive laws
into a single law. In fact, it’s now just a matter of a proper mathematics to achieve
the goal. Indeed, by taking the Jaumann derivative (2.13) of the relation (3.2),
we have

v r
PR +—2ce(
0 Ce

v
T

02V LER PO
= c: ; ce) - F i =g (4.1)

or, in the component form (dropping the index ¢ for the moment)

v W 2\ v 12y .
S = lz Sia (‘ﬁ) 4B (") } Oup 32 (ci-k = ) b (4.2)
5 Glay 3 g 0 Cj 00

v
Substituting C, from (2.14) into (4.2), this becomes

- oW\ 2V 1. 2T
Ty =4 [ Vim Ve (OC)BJ- + Cik Vam Vg (06‘2)5-]-&;3] Donn+ 2 (ka SCA] (;b ) 6 (4.3)
or, shortly

v - ) ;
Tij = 1ijmn Pmn. 1 Qij 0 (4.4)
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1.e, in dircet notation

N i .

T =1le [ﬂ)e] -+ Qe 0 (45)
Inverting (4.5) for 9,, we obtain

, ~ Vv Lo

Dy = A [T] + Mee 6 (4.6)
which is the rate-type constitutive law for the elastic part of deformation.

With regard to the plastic part of deformation, we recall from [2—4] that
in the case of isotropic hardening when f becomes an isotropic function of the
stress, either the material or the Jaumann derivative with respect to any spin can
be used in the structure of the law (3.3). Restricting, therefore, ourselves to the
case of istotropic hardening, we rewrite the constitutive law (3.3) for the plastic
part of deformation in the form

L (of Y df \of
D = — 0 — — — 4.7
’ ‘7QTT+56001 A

In the component form this reads

1 o 0 L4 1 of o :
Df = (’ / / ) Tmn + (— fi) 0 (4.8)
j aTij aTmn ‘7 ()6 ()Tij
i.e., with obvious notation,
v
or
v .
Dp = Ap [T] +J‘(Jp e (4.10)

This is the rate-type constitutive law for the plastic part of deformation.
To obtain the rate-type constitutive law for the total elastic-plastic deforma-
tion, we substitute (4.6) and (4.10) into the relation (2.16) to get

D = (Re + Ap) [4] + Cite +6p) (4.11)

\%
D= A[x] +.A49 (4.12)

This is the rate-type law for the elastic-plastic material in non-isothermal deforma-

. . , . ; v
tion. It gives the velocity strain D as a function of the stress rate T, temperature

rate {) and the tensors (operators) A and 4, which depend on the current state
(i.e. stress, temperature and other quantities which define the state). Inverting

L
(4.12) for =, we obtain the other form of this rate-type constitutive law

v - e
=L [D] +N6 (4.13)
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We, however, observe that in the laws (4.12) and (4. 13), the Jaumann deri-
vative is with respect to the plasm spin W,,. Although such a structure of the con-
stitutive law is very prescient in revealing the nature of the kinematics of the clas-
tic-plastic deformation process, in the application of the theory it would be awkward
to work with this structure, since the spin W, is not simply expressed in terms
of the velocity field as is the total spin W’ Fortunately, we can formulate the equ-
ivalent forms of the constitutive law in terms of the Jaumann derivative with res-
pect to the total spin W, rather then plastic spin W, Following exactly the same
mathematical procedure as given in [2—4], we can rigorously prove (for details,
sce |2,4]) that the elastic- pldstu, material also obeys the next two laws:

S B B ot (4.14)
= Z[D] +N§ L (4.15)

where
C)=CH)=W( )+ )W (4.16)

is the Jaumann derivative with respect to total spin W.

The expressions (4.14) and (4.15) are the final forms of the constitutive law
for the material under the conditions of non-isothermal elastie-plastic deformation.
They are in this form derived for the first time in this paper and present the exten-
sion of the previous author result obtained for the isothermal deformation, pre-
sented in [2]. The constitutive laws (4.14) or (4.15) are not restricted to small strains,
and the only major restrictions imposed on them are the isotropy requirements and
time independence. Elimination of these restuctlom, i.e. inclusion of anisotropy
and time dependent (rheological, viscous) effects in a satlsfactor) manner, would
be, of course, worthy goals for future investigations.

Finally, it should be mentioned that in the case of isothermal deformation,
the laws (4.14) and (4.15) reduce to
D — A3 | (4.17)
= L [D] (4.18)
as already established in ‘['2—-.4].
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LA DEFORMATION ELASTO-PLASTIQUE NON-ISOTHERMALE
Résumé

Le but de ce travail est I’établissement de la loi constitutive du type incré-
mental pour les matériaux élasto-plastiques aux conditions de la déformation
non-isotermale. C’est effectué en étendant I’analyse qui est presentée dans [2—5]
au cas isothermal. Le résultat obtenu, les lois constitutives (4.15) et (4.16),
sont formulées ici pour la premiere fois. Elles ne sont pas restreintes au cas des
petites déformations et leur seule restriction vient de la supposition d’ isotropie
de la déformation et de I’ absence des effets visqueux (rhéologiques).

NEIZOTERMALNA ELASTO-PLASTICNA DEFORMACIJA
Rezime

Cilj ovog rada je da se formira izvodni (inkrementalni) tip konstitutivnog
zakona za neizotermalnu elasto-plasticnu deformaciju metala. Ovo je postignuto
prosirujuci analizu izvrSenu u [2—5] za izotermalan slucaj. Dobijeni rezultat, tj.
konstitutivni zakoni (4.15) i (4.16), pojavljuju se izvedeni po prvi put u ovom radu.
Oni nisu ograniceni na sluc¢aj malih deformacija i jedina njihova veca ogranicenja
proizilaze iz pretpostavki izotropnosti deformacije i odsustva od vremena zavisnih
(viskoznih, reoloskih) efekata.
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