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1. Introduction
Let V bi the velocity field of a two-dimensional incompressible flow of a

slow viscous fluid. In this case the Navier-Stokes equation is simplified and can
be written as

i Mg B (1.1)
0x
{J.Av—a—p= (1:2)
ay
and —
divV =0 (1.3)

where IV = (u(x,v), v(x,¥),0), p = p(x,y) and p is a constant. Introducing the
complex variable z = x | 7y, we obtain two expressions which are eequivalent
to the above equations [1]:

i+ iv)=2[p(2) + 29 () + ¢ (2)] (1.4)

p = — 8u Im[9'(2)] + const. (1.5)

where ¢(z) and §(z) are two analytical functions which have to be defined for each

particular problem. Further, considering still the expression for force F on the

N
arc z122, we get:

J(X +iY)ds = 4ufo(z) — 2 ¢'(2) — Y232 (1.6)
where F = (X(x,y), Y(x,y),0) and s is the arc lenght z:;

Now let ¢,(z) and {,(z) be two arbitrary analytical functions having in domain E
only point singularities of which noonc should lie on the given curve C c D.

5°




68 i B. Krugié

Designating the domain inside the curve C by D¢, we can write the functions
9o(2) and y(z) as follows:

‘?(1(3) = '{Jm(:f) “ 'Pnz(z) (1.7)
';Ju(z) = (=) 1 '\1’03(3) (1.8)

where ¢,(2) and y,,(2) are regulator in the domain D, = D — (D UC), and ,,(z)
and {y,(2) in the domacin D. If domain D represents the entire plane z, then
for the given functions ¢,(z) and {,(z) the summands on the right sides till the
additive constant are precisely defined. Now introducing curve C in the initial
domain D as an additional boundary, we obtain a changed velocity field. In what
way this new velocity field depends on the initial one is explained by the cylinder
theorem. Let the new velocity field be defined by the functions ¢(z) and (z) and
let it be

?(2) = @y(2) + ¢:i(2) (1.9)
$(2) = do(2) + $u(2) (1.10)

where the functions ¢,(z) and ¢,(s) comprise only the local singular behaviour of
the fluid flow in the neighbourhood of the new buwndary. If C is a closed curve
and the tluid tlow autside curve C is wanted, i.e. in Domain D, then the functions
¢,(2) and ¢,(2) in D, are regular. We shall restain to the case when domain D is
represented by the entire plane 2. The determination of the new velocity field in
domain D, then corresponds to the following boundary value problem:

[¢(z) +2¢'(2) + ¥(2)]* =0, z€eC (1.11)

while — designates the limit from domain D to the boundary point on curve C.
As a boundary condition the most frequent pequirement about the zero value of
the velocity on the boundary is taken.

Considering the equations (1—7), (1—8), (1—9) and (1 —10) we then obtain

{[‘Pm(z) + @oa(2) + @u(2))] + = [_%1’(3) + o2 (2) + 9,/ (2)] +
+ [You(®) + Yoe(2) + (@D} = 0,2€ C (1.12)

With regard to the agreed properties of the present functions, the above equation
can be written still as

[(?1(3) & @1’(3) + '1'/1(3)]+ = {“[(POJ(Z) + z %1’(3) + @@+ —
— [90(8) + 2902’ (2) + V()] } = 9(2), z€C (1.13)

For the particular case the function f(z) is given. From the theory of the
boundary value problems of the form (1 —13) it is also known [2] that in the case
of the outer boundary value problem the solution always exists. The proot of the
existence can be done by Serman’s method [2]. Under the following headings we
shall consider some special cases by transforming the problem to the Riemann-
-Hilbert’s boundary value problem of analytical functions.
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2. Cylinder Theorem for Circular Boundary

Let circular boundary C have the equation zz = 1. The functions gu(z),

You(2), @,(2) and ¢, (2) are regular in domain D; = {z,|z| > 1}, and the functions
90:(2) and Yy,(2) in domain D¢ = {z,|z| > 1}. With this in view we obtain for large
o a
Poi(2) = a, — P o o (2.1}
G a,
Doy (8) = — 8 R (2.2)
| by
don(2) = by + — + ... (2.3)
A
(=) = A, + Tl + ... (2.4)
- A |
?/(@) = ——+... (2.5)
; B
$,(2) = By, + T] * . ea (2.6)
and for small z
Po(2) = @y + @12+ @z 22 + ... (2.7)
Pox(2) = a, +2a, + z... (2.8)
";’02(3) = bo | 51 24 vus (29)
Considering the equations
— + = f 1%
e1(z) = 9, (7) (2.10)

W) =, (ﬁ) (2.11)

(2.13)

(2.14)

). (2.15)
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equation (1 —13) can be written as follows

| | ] Ji= =5 I I /

lfpl(:) Foo(2) -+ 2 @gh (‘:‘) l t,'mz( )l o l =& il
e 0y

gV ('w T2 %ol :) — dor (N) — Pua(2)

I'rom the above enumerated properties of the presenmt functions follows
that the function ®(z), defined by

=0,zcC (2.16)

~

~

1 1 | 1
D(z) = — =z 9 () — 2 (7) — Po1 (j) — Jo1 (j) — ¢p2(2)s |2 > 1 (2.18)

<
<)

. I -
D(2) = 9,(2) + 95,(2) + 2 o} (*) t Dos ( ), 2| > 1 (2.17)

is a polynominal of the first order
O(z) = Az + B (2.19)
A=a, (12.9)

wherefrom follows

0(5) = — o) + 3,5 — = 5o (i) ~ T (;) +B (20)

W) = o) — B (o) = L { 2a () +
" (%)l —B (2.21)
The solution of the problem is now
P(2) = poa(2) + @, 2 — 2 $fa (‘%) — Joz (%) + B (2.22)

w(2) = dos(2) — Sk iy, Pos (i—) I :i% [3 03 (L) 4

L]

Constant B still remains arbitrary.

The comparison of the cylinder theorem contained in the above two equa-
tions to the analogue theorem in [1] shows that the theorem in [1] is carried out
for the conditions ¢,,(2) = ¢,(z) = 0 and ¢@5(z) = 0 and thus still o,,(z) = con-
stant or ¢,(z) = constant respectively. So the results (2—22) and (2—23) repre-
sent an essential generalization.



A Contribution to the Cylinder Theorems for Incompressible Viscous Fluids 71

3. Cylinder Theorem for a Straight Infinite Boundary

Let boundary C be axis x, domain D; the upper and domain D the lower
semi-plane. If to equations (2—1) to (2—15) the corresponding equations are
formed for the here discussed conditions, then from (1—13) follows:

[9.(2) + @0.(3) + = Pox(2) + @02(3)] b [== 2 G1lz) — 4)1(5) — 2 ¢ou(2) —
- 501(3) — pa(2)]- = 0, zeC (3.1)

From the behaviour of the present functions follows that the function ®(z)
defined by

D(z) = ¢,(2) + @ou(2) + (2) P02(2) + oa(3)s  Iml[2] > O, (3.2)
O(z) = — 291(2) — $u(2) — 2 P0(2) — You(2) — @oa(2)s Iml[z] >0 (3.3)
is simply a constant:
P(z) =B (3.4)
wherefrom follows that
91(2) = — 901(3) — 2 P2(2) — oa(3) + B (3.5)
UE) = = o) = Fole) + 2 12 90) + @] =B (39

Thus the solution of our problem is

o(2) = 9uale) — & Bhal#) — Joale) + B (3.6)
M@=%@—%@Hz£k%ﬁH$ﬂm—B (3.8)

The remark from the previous heading is valid also for this solution.

From equations (2—22), (2—23) as well as from (3—7) and (3 —8) it is evi-
dent that the summands ¢, (z) and ,,(2) exert no influence on functions ¢(z)
and y(z), therefore thay can be omitted in practical calculations. This is also ge-
nerally valid. From equations (1—7), (1—8) and (1—9), (1—10) and from the
properties of the present functions follows that the generality is in no way inflicted

if we take the sum of ¢,,(z) 4 9,(2) for a new func®ion ¢,(2) and $,,(2) +,(2)
for J1(2).

All the properties of the newly created functions remain unchanged when
compared to the original two.

Example:

J !
Let Po(2) = 0, "\bu(z) = ‘_j')—‘ + ——g-,-—-,-,;: Im[z,] > 0.

s — & g — &

Here it is

—_—
<0

|

[

7 q Di
’Pul(z) = 'Pnz(z) =0, r~:J(11("<7) = —, 4}02(:) = - L

< 0
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and

pi
p(z) = s
' Pt Lz
FYJ(J) e - i

o~ ~ - )2
L ) (‘-' o ‘-*u)

4. Slip Cylinder Theorems

A cylinder theorem is called a slip-cflinder theorem when instead of the
zero value of velocity on boundary C the zero value of the normal velocity compo-
nent and of the tangential force component per unit of lenght of boundary C [3]
is taken as a boundary condition.

Let curve C be given by equation & = z(s) where s is the arc lenght of the
curve. We use the designation — = 2. Then the normal velocity component

ds
is given by the expression

Vi=VPn = Re[i(u {1 v)é‘“] (4.1)
and the tangential force component per unit of lenght by

2 = BellX 4 47 (4.2)
ds

Taking into account equations (1—4) and (1 —6) the above two equations
take the form:

Vi=2Re{3[o(z) + 29'(2) + U=} (4.3)
Fr=4uRe{Z[0(z) — 5 0(z) — 4(2)]} =

=4p Re{2¢'(2) — 2[9(2) + 29 (® + U@} (4.4)

Multiplying equation (4—3) by 2u deriving it to s and adding it to the other
equation, we obtain

2u(Vay +Fr=4pRe{2¢'3) + £[9(z) + 29'(2) + U@} (4.5)
Equation (4—3) and (4—5) cab be unified into equation [4]
[¢'(2) + ¢'(@)] + Z[9(s) + 2 9'(2) + (z)] =

] [ =2 3N l = . l ‘7A] 4
=il Vn TR V" 4.6)
2l( )+2H(Ft) lp( )l (4.¢

where p is the radius of the osculating circle of curve C in point z.



A Contribution to the Cylinder Theorems for Incompressible Viscous Fluids 73

The boundary value problem can be stated by equation (4—6) where the
right side is equalized to 0, in cases when curve C has no straight sections. In the
case when C is the axis x, we simply remain at equations (4—3) and (4—35). Since
in this case s = x, z = 1, 2 = 0, we obtain

Re [9(2) + 2¢'(3) + $()]F =0 (4.7)
Re[¢(2)]t=0, z2=x (4.8)

Due to (4—7) in (4 —7) still the middle term in square brackets can be omitted.
Considering the remark it the end of the previous heading, (4—7") yields

[91(2) + @02 ()] — [—i(2) — po2(2)]” = 0 (4.8)
wherefrom, taking into account the properties of the present aunctions follows
¢1(2) + Pox(2) =0 (4.9)

9,(2) = — 9p(2) + B (4.10)

where B is an arbitrary constant.

and

Irom equation (4—7) then follows

Re[9,(2) + 90(2) + l-IJl(z'_) + $pa(2)]T =0

wherefrom considering (4—10)

[$.(2) + 5[»2(3)]+ - [_51(3) — $ou(2)]- = ~(B+B), z2=x (4.11)
and taking into account all that bas been solved before
Ui(2) + ;’;02(3) =1K —B (4.12)

where K is an arbitrary real constant.

Out of this the solution of the problem is obtained
9(2) = 9u:(2) — Pox(2) + B (4.13)
Y(2) = Yoea(2) — @nz(z) — B + K (4.14)

Opposed to the solution in [3], our solution contains still the arbitrary real
constant K which can e.g. define rthe velocity of the fluid on the boundary in

o= 00,

If boundary C is circular having the equation z - z = 1, then formulation
(4—6) will be used in order to solve the problem where 2 = ¢ %, 2 = — iz, 2 =
= — z will be taken into account. Thus from (4—6) follows

[¢'(2) + 9'(2)]" —=zlp(z) + 29'(2) + $(x)]* =0

ze

(4.15)
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abd wherefrom

/ | L = 414 , I
(PI(S) = 'N (Pl(:) o L:Jng (_‘:)’ o [ 7'902('3) f T'f’n:(‘g) I

~

t
]

by

I I\]
'—."J,( )’ =0 zeC (4.16)

The function ®(z) defined by

; | I =
¥E) = 9i(2) = o)~ L o

~

n[_

), |z] > 1 (4.17)

_ /1
®w=-¢u@;{wawi{¢(~yld<l (4.18)

~ ~

is, except in z = 0 where it has the pole of order one, everywhere regular (also
in & = o0) thus it is

A

D) =2 B (4.19)
=

From (4—17) follows that B = 0. (4 —18) yields

w@=—%4‘y%§%(v+ﬂ (4.20)

where A is an arbitrary constant.

From (4—17) we obtain still the equation

z g Z

, 1 A l = 1
ma—jm@r>_+%%—) (4.21)
The solution in the frame of the required propderties is
wy ¥
0:(2) = — 2 * Yoo () — (4.22)

In this equation it is

5 & 1
Lo2(t) = f L’rjng(u) du, u = —
<
0

Finally the solution can be written as

P(2) = 902(2) — 2 Yoz (i) — 4 (4.23)

~
<

W(2) = $ia(2) — Py (J—) g b (' ) + A (4.24)

~ ~ o~
~ ~

~

The theorem in [3] is just a special case of the above solved.
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5. Cylinder Theorems for the Boundary Mapped on a
Circle or Line by a Polynomial

Let the polynominal z = (%) = P,(Y) map the exterior of the domain
bounded by curve C into the exterior of a circle with the equation of circumference
% = |. Using the indices 0, O and 02 in plane C analogously to the previous
use, the functions ¢(z) = ¢(¥) and §(z2) = U(%) at zero boundary velocity can be
written as

k=n—I1
B 1 , 1
‘\B(C) = q)uz(:) c e Bk‘ :n—k — (‘)(C)&)Dz i LTJuz (__) + B (5'1)
D DRAC
k=n—I1 {
@(C) =~ (TJU:(C) = Bi» _': - ;:’502 ) o
28 e e (
A
w (_ k=n—1
- C) a4 — b n—k1_i[m = (1 L
W{Z 8o (3 — B) ¢ o O c)
= 1 ]
e f— . 52
¥ ( cﬂI = =2
where
_ dp  @'(0)
= (D Sr) e ey e U
@9 (2) & W)
and

() os (—15) =2 B LK £ o (1)

It is also required that the polfnom «’( %) has all the zeros outside domain D.

i § thc—; polynomial 7 = w(l) = P,(%) maps the exterier of curve C into the
upper semi-plane of plane , then at the previous boundary condition follows

;15(@ = 5\602(0 - @(:) d)oz(C) — Lz;uz(o + B (8.3)
o d

Both theorems can be proved by the same methodology as the previous
theorems, therefore the proofs have been omitted.

Example:

Into the fluid flow a boundary is inserted along the positive part of axis x
The thus created domain is mapped by z = w(¥%) = £2 into the upper semi-plane
of plane Z. In this way, at the original boundary condition of zero boundary ve-
locity, we get
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g e ~ o I i % i )
(P(‘s) = 'Pn‘.’(é) 5 ) '{-’UZ(C) - ';Juz(‘:)T B

)

5 S ~ | all =, =
"I/(%) - k;.m:(%) ] 'Pu::(t.’) o ) t dt ) '{402(:) i ',:an(:) — B
And in the case of the boundary conditions of the Slip-Cylinder Theorem
we get

(A\f;(:) == EPJIJ:(:) o ;15”-3(':) ‘I B
':J(t) - ’Btl:(:) o 'Lu:(:) — B : I.K

where K is an arbitrary real constant.
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BEITRAG ZU DEN ZYLINDER THEOREMEN BEI DEN ZAHIGEN
FLUSSIGKEITEN

Zusammenfassung

In diesem Beitrag werden die Zylinder Theoreme fiir die obene Stromung
der langsamen zihigen Flussigkeit bei verschiedenen Randbedingungen behandelt.
Mehr verallgemeinerte Abstimmungen als diejenige die bisher bekannt waren,
werden gefunden. Alle theoreme werden durch die selbe Methodologie gepruft,
d.h. durch die Umformung des Problems auf Riemann-Hilbert Randwertproblem
der analytischen Funktionen.

DOPRINOS K CILINDRSKIM IZREKOM PRI VISKOZNIH TE
TEKOCINAH

Povzetek

V tem sestavku so obravnavani cilindrski izreki za dvodimenzijski tok pocasne
viskozne tekocine pri raznih robnih pogojih. Najdene so splosnejse formulacije
od doslej znanih. Vsi izreki so dokazani po enoti metodologiji — s prevedbo problema
na Riemann-Hilbertov robni problem pri analiticnih funkcijah.
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