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Introduction

This paper represents an extension of authors contribution [1] to the
second order theory for thin-walled member with the open cross section.

The presented theory differs form the conventional form by a unique treat-
ment which includes the relations between the bimoment, St. Venant’s torque,
warping torque and other internal forces.

The system of six scalar equations and an additional equation relating the
deplanation of cross section are derived applying the principle of virtual work to
the deformed confiquration of the member.

Deformation of the member

Consider a thin-walled member with open cross section and an arbitrary
polygonal centre line of the wall (Fig. 1).
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‘T'he position vector of an arbitrary point of the underformed memebr can
be written for a fixed rectangular cartesain system x, (1 = 1,2,3) using the summa-
uon convention, in form

¥ k R 5]
ro=xji; F = ], 2.3 (1)

where x; are coordinates of the observed point, 7, and 7, unit vectors along the
principal axes of the cross section and 7, the unit vector along the member axis.

The position vector can also be written using the coordinates s, xg of the
middle surface of the member and the distance e of the observed point form the

middle surface:
r* = r(s, x3) + ¢n (2)

where n is the unit vector of the normal to the middle surface, while s is the co-
ordinate ot the centre line of the cross section. The unit vector of the center line
is denoted by t.

The position vector in undeformed configuration can be, obviously, also
represented in form:

r* =x,i; +en (3)

where x; are the cartesian coordinates of the middle surface.

In deformed configuration the position of the same point is defined by
R* =r* +u* (4)
where u* is the displacement vector:

k4%
u = u,

i; (5)

The basic assumptions governing the kinematics [1] of deformation are:

i. The projection of the member cross section on the orginal plane behaves
line a rigid plate (in its own plane) in course of deformation.

ii. The shear deformation &g, in the middle surface of the member can
be neglected.

iii. A line element perpendicular to the middle surface before deformation
remains perpendicular to the middle surface after the deformation.

On the basis of these assumptions the relations defining the components
of the displacement vector u* are derived in the following form:

ui = 2p — (x3 — Xop) @p

uz = np + (xI — xp) P1p (6)
uy = Wo — Epxt — 1p x3 — 9p 0y
” d
where ( ) = —

dxs
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The functions £,(x,) and 7,(x;) are components of the displacement of an ar-
bitrary centre of rotation (pole) P (x;p - xyp) in the direction of axes X, and X,,
while ¢, is rotation of the cross section same centre. The sectorial coordinate 1s
labeled by w,:

wy = {)lzp ds + hup e (7)

where
hp = (x, — X1p) X208 — (%3 — Xap) X1,s

(8)

hnp = (x1 — X1p) Xz,e — (%3 — Xap) X1,

are the distances of the tangent and normal to the centre line measured from the
centre of rotation P, and

The position vector R* after the deformation can be writen in form

R* = (x{ +uj)is (9)
or
R* =R + en', (10)
where
R = (x; + w) i (11)

is the position vector of a point on the deformed middle surface, while n’ is the
unit vector of the normal on the deformed middle surface.

According to the assumption (iii.) the unit vector of the normal on the middle
surface is given by

_ RE (bl )eds 5
(R} RX)2 (R} . R )2 -
while the unit vectors of the coordinate curves s and x; are:
s 77);74 — @ngj;)’{ii_ (13)
(Rs- R (R R )2
po RE (G ua ™
(R R (R, R¢ue
where
b == d-- : ,j=1,2,3.
0 x

Vectors i; constitute an orthogonal triad according to assumptions on the
kinematics of deformation,
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Virtual Displacement and Deformation
The virtual displacement of points on the deformed member is
u' :ﬁ!f i;, ”5)

so that the positon vector after additional displacement is

R" =R | u, (16)
i.e,
R' = (o +al + @ )i (17)
or
R" =R t+en’, (18)
where
R =0 t+uw+ )i (19)
and
n' =Ry = O T bl (20)

(R‘; . '; )]/2

The projections of the virtual displacement u* on axes and x,, x, are deter-
mined by assumption (i.) about deformation:
W =Ep— (a3 +ul — x2p)Pps (21)
w = '_’51) + (& + 8 + xlp)'qslb

Functions £ ,, 7, and ¢, represent virtual displacements of the cross section pro-
jection in the direction of axes x,, x, and its rotation about the pole P.

Displacement component ;" is determined from conditions (ii.) and (iii.).

According to the assumption (ii.)

€3 =R, "R, =0. (22)
where B
R., = (0 + w + ;)5 i (23)
and B
R, = (x; + uj + )5 i (24)
thus, B
es3 = i is (%5 1 ui),s + g3 (v 4 wi),s =0 (25)

Displacement component u3 i.e. @3 is significantly smaller then uj and
us , i.e. 0y and % . Hence, products of the derivatives of these functions are ne-
glected in the second-order theory:

i i p =0 o, =50 (26)

Substitution of (21) into equation (25), in conjuction with simplification
(26) leads to

—idg,s = Ep (% + w),s + 0p (v + )5 +
HF @ [ip + Ep (o= xap).s — Np (xF — xu:).s] ()
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From condition (iii.) it follows that
fa=R} R =0 (28)
leading to
cey = i3 (% + ui)se + dite (6 + ui)s = 0. (29)
Substitution of (21) preceeding equation, in view of simplification (26) leads to
— e = Ep (X + e + Np (83 + u3)e +
+ @p [hap + Ep (x5 — x3p),e — Mp (xT — x1p),e]- (30)
Intergrating u3,e and w3,
a3y = g 30 de + 5 #3,5ds + wy (x3), (31)
and making use of (27), (30) it finally follows that
@ =wo — Ep (x7 +ul) — Np (57 + u3) —
— @p [0p + Ep (33 — x2p) — np (xT + %1p)] (32)

The normal strain =33 associated with virtual displacement field is defined by

Hh=Rjs - REV2— RE - RDYE (33)
resulting in
e5 = (xf + ui),3 - i3, (34)
In scalar form, accounting for (26)
eh =ulsils +ws sy + a3 (35)
The strain tg3 becomes
e =R R3— R Rg3> (36)

ie.
em=c¢[Rs;-u;+R3-uj], (37

Finally, making use of (9), (21) and (32).
e =29pe+ e(uls @33 + Uiy U3), (38)
which according to (26) results in

e =209pe. (39)

3 Mehanika 8
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Equilibrium Conditions and the Governing Differential
Equations of the Member

Consider the element of the member between cross sections x; = X30
and x3 = xy, + dx; before deformation. The stress vectors* acting as external
torces on the bounding cross sections after the deformation are 5, and o, | Gg,5 dxs.
A surface load p is applied over the middle surface of the member.

Let [ be the work of external forces and {7 the work of internal forces cor-
responding to the given virtual displacement vector u*. Then,

w+yu=0 (40)
The work of external forces on the unit lenght of the member is
1% :}j“(gs.sﬁ o3 - W3) dF - é:r pu ds, (41)

where the first integral is taken over the entire area F of the cross section while
the latter one is taken over the entire length of the cross-sectional center line.

As a result of introduced assumptions four components of the virtual strain
tensor vanish:

Cee=ch = €z = =0, (42)
Therefore, the work of internal torce per unit of lenght is
U=—1][ (633} + 053 e53) dF, (43)
where §
G3; = o3 * if (44)
Gs3 = gg " t' (45)

Vector g3 can be defined in terms of its projections on the axes of the fixed
coordinate system

O3 = o©3i° iz (46)
From (44) and (46) it follows in view of (6) and (14):
Ga1 = Gpy — ¢p 632 -+ [Ep — @p (X7 — X2p)] 6
g‘:zz = QpOa + O3 + [Mp — Pp (xf — x1p)] 633 (47)
O = Efv — "P;,: (x; N xzp)] G31 + [YJP + 95 (xi" — xlp)] Ggs + Gy3

Using (15) and (46) the work of external forces is written as

1% =1j (631,83 s + o3i #i3) dF + [ py iy ds (48)
where B
pi=P i (49)

The work of internal forces, after substitution of (35) and (39) becomes:

U= —[lossuisais +w3ids + @33 + 2 o5 ppe] dF (50)
F
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Substituting derived relations forW and U into eg. (40) using formulas (6),
(21) and 32), and collectiong the terms multiplying zo, Ep, ..., ¢p obtained is
the equation it form:

fiwo + fa gp *”f* Np + fa9p — fo zp — o 7]5 w iy @1’3 = 0, (51)
where
= £{533 — [o3 E:;: + Gay 'fh; — (o (x; — X2p) — Oa3 (xf —
— x1p) o1’} dF + [ pods
fa =}=J {0"31 — [G230p — (5_; o ‘P;’ (x5 — x2p)) 0'33]’} dF -+ [ prds
fa = FI {023 — [oa10p — (np + @p (¥T — X1p)) O3]’} AF + [ pa ds
(52)
fa =£{623 (x‘l‘ - xlp) — O3y (xE - x2p) -+ [Ep Oo3 — 7p O31.—
— 033 (&p (x5 — x2p) — Mp (x1 — x1p)) + <P; a3 ((¥1 — x1p)? +
+ (x3 — x2p)2))'} dF + J [p2 (%1 — x1p) — P1 (x2 — x2p) + Ep p2 —
— p p1 — @p (P1 (1 — x1p) + P2 (%2 — x2p))] ds
fs =1£ {ch3 x1 — 63 — @p 0633 (%3 — x2p) — o23] + 633 (Ep + x2p 9p) +
-+ T’ x’f} dF + _[ﬁs [JC1 — Pp (xz = X‘Zp) = Ep] ds
fe =FI {o33 X1 — 025 + @p (ch3 51 — 631) + 6% (Mp — x1p 9p) +
+ 7' %3} dF + [ ps [x2 + @p (x1 — x1p) + 7p] ds
1 =FJ {"—733 0-‘; — 63 (x5 — x2p) — 63 (¥] — X1p) -+ 2 63 q);e 3
+ Ep (63345 — 653) — Mp (o33 x] — o3) —
— ‘5;3 (E;p X2p — Np X1p) + 7'03;} dF +
—I—gf’s [wp + &p (k2 — x1p) — Np (X1 — x1p)] ds.
i
T = 6y [€p — ¢p (¥3 — x2p)] + 623 [1p + @5 (x] — x1p)]
and

T = o3 [Ep — @p (%3 — x2p)] + 6 [1p + @p (x1 — x1p)]
Since the equation (51) must be satisfied for arbitrary values of parameters
wo. . . ., 9pthe terms fo, (m = 1,2,...,7) must be equal to zero
fm=0: m=l,2,...,7 (53)

Integration of those terms over the surface leads to the following system of
equations of equilibrium:
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N —(Qu& + Qunp + Tpapp) +ps=0
Ot + [INEp + xepop) — Megp — Qagp] + p1 =0

Q2 + [N(mp — x1ppp) + Migy + Q1 gp] + po =0

Tp +1Q:&p — Quinp — £y (M2 — Nixzp) -+ my (M, — Nxip) + (54)
05 (NiF -+ 2M By - 202 B+ Mo BT+ 7y - p2 Ep — i1y —
o @yﬁip =0

Mi— 1+ mi—p (M — Qo + m2) + (N'+ pa) (Ep — x2p 9p) +J1 =0
Mj = Qs + my + g (Mi— Q1 + 1) + (N'+ po) (1p — 319 9p) + Jo = 0
Mg — To + my + Ep (Mj — Q2 + ms) — np (M} — Q1 + m1) —

— (N4 pa) Epazp —mpx1p) +Ja =0

where
N = [ 633 dF — axial force,
F
Qi = | 03:dF, i = 1,2 — shear forces,
F
M; = [ o33x7 dF, i = 1,2 — bending moments,
F
M, = [ 633 oy dF — bimoment
F
Tp =£ [023 (xT — x1p) — 631 (x7 — x2p)] dF — torque,
T's = 2[ og3edF — st. Venant's torque,
F
T, = Tp — Ts — warping torque,
Nh=[xdF, Jo=[<x3dF, Ji=] T wp dF (55)
F F F
and

11-: oa3 [(x1 — x1p)? + (x2 — x2p)?] F =
(f\rzg + 2 M B% + 2 Mz B2 + M, Bus)
pi=1pids; my=[psxids, i=1,2
S s
mp = g[?z (x1 — x1p) — P1 (x2 — x2p)] ds
?;Zp = g [p1 (x1 — x1p) + P2 (x2 — X2p)] ds
my = [ p3 wpds
s
Quantities 2, ..., B, are defined as:

Iy + I

2 _ .2 2
1 = Xip 1+ X5p + Iz
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[ xi (%52 + x3%) dF
=

- — X (56)
s 2hi =
[ x3 (xi2 + x32) dF
_F
= 2 Iz B
§ w0y (%12 + 232 dF
53 =< I )

where
In = [ x\2dF, Iz = [ x32 dF, loo = | 0,2 dF
F F F

The first six of equations (54), are alredy known equations of the second order
theory tor the member. The seventh equation of equilibrium represents a new rela-
tion characterizing the behaviour of the thin- walled member.

Linearisation of the system of equations (54), using the solutions of the linear
theory for stress resultants in computing the products of the stress resultants and
displacements, leads to the following system of equations

N +p3—(E Q1+ mpQz+ 5 Tp) =0

Ot +p1 + [N(Ep + x2p9p) — p Mz — ¢p Q2] =0

Q3 + P2+ [N(np — x1p9p) + 9p M+ 0 Q1] =0

Ty +mp + [Ep Q2 — p Q1 + 0p (M1 — 21 N) —
— &, (M2 — x2p N) + @p (N2 + 2 M1 B1 + 2 M2 B2 +
+ My Bo) +p2lp —prp — ppmp =0

M — Q1 +m =0

M; — Q2 +me =0

My,— Ty +m, =0

[

neglecting the integals Ji, J: and J3, whose influence on the state of stress is insigni-
tficant.

The last equations have the same form as the corresponding equations of
the linear theory.

Equations (57) can be further reduced to a system of four equations. Making
use of well known relation of the linear theory [1] it follows:

E'Fwy" — (5p Q1 + npQ2 + ¢p Tp) = ps

EJnEp" — [N(Ep + x2pop)) + (pp M) + (ppme) = p1 + mi
E'Joanp’ — [N (np— x1p9p)] — (pp M1)" — (ppm) = p2 + my

E'Jow 93" — GKop — [ph (Ni3 + 281 My + 2B2 Mz + Bo M) —  (58)
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— x2p (N&p) + x1p (N ) + Ep Mz — up My —
— Epm + npms + epmp = mp + m,
where D, (P = D), is the shear centre of the cross section.

The last there equations of the system (58) coincide with Vlasov's equations
[2] for

and

M, = 0.

Neglecting the expression in the brackets, the first equation of the system (58)
becomes the same as the corresponding equation of the linear theory.
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NICHT-LINEARE THEORIE DES DUNNWANDIGEN STABES
MIT OFFENEM QUERSCHNITT

Zusammenfassung

Die vorliegende Arbeit stellt eine Erweiterung des Beitrages [1] an die The-
orie der zweiten Ordnung des diinwandigen Stabes mit offenem Querschnitt.

Durch die Anwendung des Prinzips der viruellen Verschiebugen bei der
Aufstellung der Gleichgewichtsbedingungen an dem deformierten Element, wer-
den alle charakteristischen Beziehungen fiir die Schnittkrifte auf eine einheitliche
Art erhalten. Dies gilt sowohl fur die Schnittkrifte im klassischen Sinne als
auch fur die dem diinnwandigen Stab zugehorigen Schnittkrafte, wie Bimoment,
St. Venantsches Torsionsmoment und Wolbtorsionsmoment.

Die abgeitete Differentialgleichungen fithren zu bekannten Gleichungen tur
eine bestimmte Belastung und Form des Querschitts.

NELINEARNA TEORIJA TANKOZDNOG STAPA SA
OTVORENIM POPRECNIM PRESEKOM

Izvod

U radu se daje teorija drugog reda tankozidnog S$tapa otvorenog poprecnog
preseka zasnovana na teorijskom konceptu izloZzenom u knjizi Kollbrunnera i Haj-
dina [1].

Predlozena teorija razlikuje se od konvencionalnog pristupa u jedinstvenosti
razmatranja svih preseCenih sila ukljutuju¢i Bimoment, St. Vevant’ov moment
i torzioni momenat deplanacije.

Sistem od sedam jednadina izvedenih primenom principa virtelnog rada
ukljucuje i jednacinu koja povezuju veli¢ine karakteristicne za ograni¢enu torziju
sa ostalim preseCnim silama.

Iz izvedenih jedna¢ina mogu se uz odgovarajuca uprosenja i zanemarenja
dobiti poznate veze za posebne vrste optereCenja ili oblika popreénog preseka.

Nikola Hajdin
Gradevinski fakultet
Bulevar revolucije 73,
Beograd





