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1. Introduction

Variational principles play an important role in mechanics, for theoretical
as well as pragmatic reasons. They provide, among the other things, a basis
for many methods for finding approximate solutions of linear and non-linear
problems. When the variational principle is used sa a direct method, the
problem of estimating the erorr involved in the approximation scheme may be
connected with the values that the functional takes on the approximate solution.
This is an important property of variational principles. However, to achieve this,
the variational principle must satisfy certain restrictions, that usually amount to
the requirement that the principle is extremal either maximal or minimal. The
problem of using variational principles to estimate the error of an approximate
solution is treated, for example, in [1], [2], [3], [4].

The aim of this paper is to construct an extremal variational principle for
boundary value problems governed by a second-order difefrentional equation of
the form

V(1 +y2)2B —F(y,x) =0, a>x>b (L.1y

where F(x, y) is an arbitrary function having the continuous derivatives with respect
to both variables. The following boundary conditions will be considered.

asy'(a) + ary(a) = az, (1.2)
bsy'(b) + biy(b) = b2; (1.3)

here a, b, as, a1, a2, b3, by and b2 are known constants. Equation (1.1) together with
the boundary conditions (1.2) and (1.3) arises in various problems of post-buckling
behaviour of elastic columns. In this context the function F(y,x) takes the form
F(y,x) = —Py/EI(x), where P is the applied load and EI(x) is the stiffness.

After constructing a variational principle for the boundary value problem
(1.1)—(1.3) we will use it to obtain an error estimate or approximate solutions.
The methods of error estimation are basically the same as those developed in [4].

Finaly a concrete example will be treated for which we will determine the
approximate solution by applying the Ritz method to the variational principle.
Also an error estimate for this approximate solution will be given.
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2. Extremum variational principle

Lt can bi easily verified that the boundary value problem (1.1)—(1.3) is equi-
valent to the c¢ondition that the following functional is stationary at y:
b N
E(y)=vyly(a)y®)] + 1LY, x)dx; (2.1)
o
where,

L=(1+y3'" 4 f(yx); fly:x) = § F(Ex) dE (2.2)
0

Py

@@= {1 * H (b2 = b1y (1) ]}1 B

St {l - [—l— (@2 —ar y (a))r}1 2 ; (2.3)
a1 as

under the condition that the variations of y at the endpoints are different from zcro.

From (2.2) we find that the generalized momentum is given by

p= oL =y (1L + 39715 (2.4)
0y
Defining the Hamiltonian H by
H=py — L, (2.5)
and using (2.4), the differential equation (1.1) can be written as
y=p —pH)e (2.6)
p'=F (»x). (2.7

Assuming that (2.7) can be solved for y for every x in the interval [a,b] so
that v can be written as
y o= F2{p; ), (2.8)

and transforming the second term in E (v) as follows

b b b b
[Ldc = {py — Hydx = [pylh — J {p'y + Hydx = [py]t — [ A (pp ) dx, (2.9)

where
A, psx) =pFL(p,x)+p2(1 —p¥) V2 —[(1 — p¥)-12 4 f(F1(p/, x), x)).
(2.10)
we get the dual variational principle in the form
b
G(py) =vly(@,y®] + [p)E —TA(p, p, x) dx. (2.11

At this point we note that the theory of complementary variational principles.
as used by Arthurs [3] for example, requires that the functionals (2.1) and (211
be extremal, minimum and maximum, respectively (or vice versa). This restricts
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the class of functions F(y,x) in the eequation (1.1) more than the procedure that
we will follow. Namely, we define a new functional I by

o>

I(v,p)=E—-G=

[

(L (v, > %) + A(py 0/ ) dx — [Pyl (2.12)

=

The functional (2.12) is the basic functional to be used in this paper. Its
main property is that it may be in minimum (maximum) on the solution of the
problem (1.1)—(1 3) even in the case when E and G are not extremal. We intend
to obtain approximate solutions to the problem (1.1)—(1.3) by minimizing [ given
by (2.12). This is a novel approach for obtaining approximate solutions.

It is obvious, from the procedure of constructing /, that on the exact solution
of the problem (1.1)—(1.3) the value of I is equal to zero. To show that I is also
stationary on the solution of (1.1)—(1.3) we calculate the first variation (treating
vy and p as independent) of (2.12).

b

5T = f k% sy + 9L gy + gy 04 sp'] dv — [Spy + pdyls (2.13)
oy 0y’ op op’

a

Using (2.2) and (2.10) in (2.19) and performing integration by parts, we get

b
SI=J{{—y" (1 +¥)32+ F(y,x)] 8 +

d = I 2 2)-1/2
+{_E{F1+ a__Fﬁ(” —F)} +p(l =) )]Sde—

4

op
— [y + PV 5 (1 — YD)yt —
|
A -5 L A b
P? o7 m]%u. (2.14)
ap’
From (2.14) ,after the use of (2.6), (2.7) and (2.8), we conclude that of = 0,

that is I is stationary on the solution of the problem (1.1)—(1.3). To examine the
nature of the stationarity, we calculate the second variation of [

b
1 ol . 02 L , 0L, 02A
e R O R e el ol
0y? 9 oy'2

2 y dy 'y op?

L9 0>

A 02\
(3p)(3p) +- - (Bp')*| dx — 3p By g 2.15
39 0p' e P 3y (2.15)
Using (2.2) and (2.10) in (2.15) and calculating the coefficients with varia-
tions of y and p on the curves where the first variation vanishes i.e., by using (1.1).
(2.4), (2.6) and (2.7), the equation (2.15) becomes
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[ 3/23,'3:5”"32_L3'3
l( AR {ag ) dy(_\’) ()1"(P)

a .()5, '

l
o)

b
0=y e . (2.16)

Now, from the fact that on the curves where the first variation vanishes the fol-
owing relation holds*

3]‘) = 8.,\" (l : __\r’ﬂ) 3"‘3’ (2]7)
Iso that on integrating by parts in (2.16) we get
b
l 1 [d ‘ oF 3
321 =—|—|— {8 (1l + y'2)3/2} — 3y | dx. 2: 18
2 Jéﬁ[dx W ( P 'y o &g
a a},

From the equation (2.18) we conclude that:
(1) The functional I has a local minimum on the solution of the equations
(LD)—(1.3) if

§£ > 0 for x e (a, b). (2.19)
_\-'

(1) The functional I has a local maximum on the solution of the problem
(1.1)—(1.3) if
oF

oy

It should be noted that in the case when 0F/dy changes sing in the interval
[a,b] we can not say anything about the nature of the stationarity of 7. Also it is
easy to see that either one of (2.19) or (2.20) does not imply that both E and G,
given by (2.1) and (2.11) respectively, are extremal variational principles. However,
if £ and G are extremal principles then 7 is also extremal principle. Examples
illustrating both situations are given in [4].

< 0 for x € (a,b). (2.20)

3. Error estimate procedure

Suppose we have an approxmate solution Y to the equation (1.1) which is
satisfying the boundary conditions (1.2) and (1.3). Our goal is to estimate the L.
norm of the difference, 3y = ¥ — y, between the approximate and the exact so-
lution of the problem (1.1)—(1.3). The method of the error estimation to be given
here is presented in more details in [4].

To connect the value of the functional I on the approximate solution (Y.P)

where
P=Y'(l + Y?2)le, (3.1)

a " The equation (2.17) follows from the method that we will use in choosing neighbouring
curves, namely, we will calculate the values of I on the neighboring curves (Y, P) where
Y=y+ 8 and P=Y" (1 + Y2 12=p | §p, v being the exact solution of (1.1 —
—(1.3) and p =¥ (1 + 391
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with the second variation given by (2.18) we first expand the terms (01 ()y),, Y
and (1 +Y’2?) 32 in power series with respect to 3y, about oF /()y and (1 + y'2)-93/2
respectively, calculated on the exact solution y. The result is

oF oF 0*F

—) ==+ —= 3 +0((W...) 3-2)
(Oy )'. ay  0y*

(1 Y2302 = (1 + 52802 — 3y/(1 4 y2)528y + 0((y) .. ). (3.3)

Using (3.2) and (3.3) in (2.18) we get

-~

e o s [i (vl 4+ Y72)3/7) — (f) > rdx O, ). (34)
ZJ(fo) 1 )Y .
“ dy Y

Now, since the value and the first variation of I on the exact solution of the
boundary value problem (1.1)—(1.3) is zero, the expansion

1
I1(Y,P) = I(y,p) + 8I(y,psdy;8p) + Y 821 (y,p,0y,0p) +

+ 0 ((8y)%, (3p)% - - - ) (3.5)

becomes,

b
I(¥,P) = — f s [%{Sy'(l + vyl — (g—f) Syrdx, (3.6)
Y

P)
y

— (—) = Rix) =0, (3.7
oy /vy

in what follows, we will distinguish the following two methods for error estimate:

where we used (3.1).

Supposing that*

Method 1. First we introduce a new independent variable © by the relation

=T (1 + Y2pRds, (3.8)
so that from (3.6) we get ’
T (b) T (d)
2 2
1 _J‘(dSy)d+2J‘8d8y n
[R (1 + ¥ J) 3/2]max di*
0
T (b)
T [R(l 2 Yiz)ﬁ?",z]min 6[ (8_)’)2 dr < —2I, (39)
In (3.9) =(b) is given by
b
T(b) =J (1 + Y'2)¥/24E, (3.10)

* We treat here only the case where (3.7) holds. The case (0F[dy)y > 0 could be treated
similarly (see [4]).

2 Mehanika 8
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and we used [ - ];, and [ - ]min to denote the maximal and minimal value in the
interval [a,b] of the function in brackets. Further, we consider a generalized Fourier
series corresponding to the error 3y

o0

3y = X Cp Oy, F 1)

n=1
where C,, are the Fourier constants, and @, are the eigenfunctions of the fololwing
spectral problem

EPn e, =0
d?

as d . (0) +a®,0) =0 (3.12)

4y (= (5))

—
9

b3 + b1 Oy (x (b)) = 0.

Substituting (3.11) and (3.12): in (3.9) and using Parseval’s equation we
obtain the following error estimate

13l < {:21[(1 + Y’?)-ﬁf'z]mqg]lfz (3.13)
- C [G(}‘%)]min .
where
T(b)
18¥llze = (f 852 () d )2, (3.14)
In (3.13) the function G (22) is given by
ad
G(2) = . — 2? + [R(L 4 Y932 (3.15)

[R(1 + Y'2)"3/2)pax

and we assumed that G (23) > 0 for every eigenvalue 2, of the spectral problem
(3.12). If the condition G (22) > 0 is not satisfied, the error estimation procedure
could be performed by:

Method 2. We expand now the error 8y in the series (3.11), where the eigenfunctions
®,, are the solutions of the following problem

d
=5 {(1 A y'z)—afzq)'n} + A RP®, =0
dx
as Py (a) + a1 Pya) =0 (3.16)

b3 (I)’,ﬂ (b) + bl (Dn (b) = 0.

Substituting (3.11) into (3.6) and using the orthogonality property of the
eigenfunctions of the problem (3.16) we get the following error estimate

=Y T 1/2

Byllze < |——— : (3.17)
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under the condition that no eigenvalue of the problem (3.16) is equal to one, i.c.,

?\n?é l, n=l,2,3,.-- (3’18)

4. Example
Let us consider the classical problem of buckling of an elastic column. The
function F(y,x) in this case becomes
F(x,y) = —k?. (4.1)

We take the boundary conditions (1.2) and (1.3) with the following values for the

constants
a3=0, =1, a2=0, a=0 (4.2)

ba=0 hh=1, b2=0, b=m.

The boundary conditions (1.2), (1.3) and (4.2) correspond to pin ended column.
We assume the approximate solution for the above problem in the form

Y = Ax (r — x) + Bx? (x — x)? (4.3)

where the unknown constants 4 and B are to be determined by minimizing the
functional (2.12), which in the present case becomes

k11

2 = = g
1=f arype By _yizp_ L }dx (4.4)
2 2 k2
0
In (4.4) Pis related to Y’ by equation (2.4), i.e.,
P =Y (1 4 Y'2)"l2 (4.5)

Substituting (4.3) into (4.4), the procedure of minimization od (4.4) with
respect to arbitrary constants A and B have to be performed numerically for every
given k2, due to the eliptic nature of the integrals involved.

We performed calculations for 22 = P/EI = 0.6325 and obtained A4 = 0.566,
B = —0.0325, which gives I = —0.008859. It is easy to conclude that in this
example the Method 2 for error estimation must be used. Since the eigenvalues
of the problem (3.16) in this case are all positive and increasing and since 21 << 0.459
and 72 > 1.344*, we get the following error estimate

|| 8y|2, < 0.236 (4.6)

In conclusion we note that the example presented corresponds to the buckling
of an elastic column when the buckling load P is equal 1.15 P¢y, where P, is the
critical load. The solution obtained here

Y = 0.566 x (x — x) — 0.0325 x2 (= — x)?, 4.7)

when compared with the exact solution (see for example [6]) agrees well in both
maximal deflection and the slope at the ends of the column.
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UBER EIN EXTREMALES VARIATIONSPRINZIP FUR EINE KLASSE
VON RANDWERTPROBLEMEN

Zusammenfassung

Das Referat bringt der Formulierung des Variationprinzips fur eine Klasse
von Randwertproblemen, die mit den gewohnlichen Differentialgleichungen
zweiter Ordnung darstellend sind. Das gebrauchte Variationsprinzip gibt die
appr ximativen Losungen mit der Ritz’sche Methode. Es wird das Verfahren fiir
Fehlerabschitzung, fur mit dieser Methode gegebene approximativen Losungen,
ergeben. Fur ein konkretes Beispiel der Knickung mit der Teilnahme die geo-
metrischen Nichtlinearititen wird einer approximativen Losung und die Fehle-
rabschiatzung ergeben.

O JEDNOM EKSTREMALNOM VARIJACIONOM PRINCIPU ZA KLASU
GRANICNIH PROBLEMA

Izvod

U radu je formulisan varijacioni princip za jednu klasu grani¢nih problema
opisanih obi¢nim diferencijalnim jednaCinama drugog reda. Varijacioni princip
je koriScen za dobijanje pribliznih re§enja Ritzovim postupkom. Dat je postupak
za ocenu greske ovako dobijenih pribliznih reSenja. Za konkretan primer izvijanja,
sa uceScem geometrijske nelinearnosti, odredeno je priblizno reSenje i ocenjena
njegova greska.
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