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1. Introduction

Thomas [1] introduced the singular surface theory to study the propagation
of week discontinuities in an ideal gas flow. Several workers [2, 3, 4, 5, 6] further
generalised and developed the singular surface theory to cover up some compli-
cated cases of real gases. Here we shall apply the singular surface theory to investi-
gate the phenomena associated with weak discontinuities in unsteady flows of
magneto fluids in an optically thick inhomogeneous medium. Nariboli and Secrest
[7] extended the analysis of Thomas to MHD flows with finite electrical conducti-
vity. Nariboli and Ranga Rao [8] combined the singular surface theory and the
ray theory to study the propagation of weak discontinuities in non-linear aniso-
tropic media. Using the ray theory Ramashankar [9] obtained the growth equation
for weak discontinuities propagating through conducting fluids, but he did not
study the behaviour of the wave amplitude. Recently, Elcrat [10] studied the pro-
pagation of sonic discontinuities in an unsteday flow of a perfect gas.

The object of the present work is to obtain the growth equation which will
govern the growth and decay of weak discontinuities propagating in unsteady
flows of thermally and electrically and electrically conducting fluids. The inhomo-
geneity effects are accounted for and the growth equation for the wave amplitude
has been solved analytically. An explicit criteria for decay or blow up” of weak
discontinuities is presented.

At very high temperature, the radiation energy density and the radiation
pressure cannot be neglected. The thick gas approximation for the radiation energy
density, the radiation pressure and the radiative heat flux has been used in the
present analysis. Under the approximation of local thermodynamic equilibrium
the radiative heat flux term is similar to the heat conduction term [1]. In this case,
the effective thermal conductivity is given by [11],

K,pff = K - 41)” an Tn,

where K, Dp, ap and T are respectively the coefficient of thermal condustivity,
Rosseland diffusion constant, Stefan Boltzman constant and temperature.
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The set of non-linear differential equations governing the two dimensional
unsteady tlow of MHD with infinite electrical conductivity are:

0p

o,k Ur + pupkr =0, {30
or
;i .
p‘;" ourtr - (L L 4R ps— 4Ry L o4+ wHH=0, (1.2)
ot o]
)
LI Y (1.3)
ot
. 5 op o : . P 0p
'{] 1 I_(‘J I) 1{})} — OV I()(V = I)R‘U”
or el
. {l ]2 (‘J 4‘1) R!)}‘ ‘”f P,'f- S {V 16 (V o l)R‘U} _[)_' 1"[ p,(
(Koegr T q)sg = 0, (1.4)
p= pRT, (1.5)

where ¢, p, u;, o and H respectively represent the time, the pressure, the velocity
components, the density and the transverse magnetic field vector. p is the
magnetic permeability. R and v are the universal gas constant and heat exponent.
The radiation pressure number R, defined by
R Radiation pressure P
D = — - = —
gas pressure P

A comma followed by a Latin index denotes partial differentiation with
respect to a space variable and (0/0r) denotes the partial differentiation with res-
pect to time r.

We assume the existence of a moving singular surface S(z) across which the
temperature field and its normal derivative are continuous with possible disconti-
nutities in the higer derivatives, while other flow quantities are continuous but
their first and higher derivatives are discontinuous. Suppose that S(z) is given
by @ (x4,¢) = 0 and we denote by »n; the compobents of unit normal vector @ ;/
grad @, and by G the normal speed of advance of this surface, that is G = —

— (a—q—)) [ (lgrad®). We assume that the surface S (z) has two sides denoted by

ot
| and 2 and the normal vector n; points into 2. The relative speed of advance of

the surface S(¢z) in the fluid is denoted by U = G — u; ;.

Let [f] = (f): — (f)1 denote the jump in a flow quantity f across S(r). Then
the geometrical and kinematical compatibility conditions [1] can be written in the
form,

] = B Ef

ot

= — BG,

where [f], a square bracket, denotes jump in the quantity enclosed and B is a scalar
function defined over S(¢) by B = [fi] mi.



Propagation of Weak MHD Discontinuities along Bicharacteristics.... 127

2. Law of Propagation

From the law of conservation of energy across the surface S(z), we have [12].
[T4) m =0 (2.1)

Now taking jumps in equations (1.1), (1.2), and (1.3) and making use of the
equation (1.6) we obtain,

UC = gk, (2.2}

—PUMN+ (1 +4Rp)E— 42 R + pHy =0, (2.3)
¢

Un = H. (2.4)

Differentiating the equation of state (1.5) with respcet to x; and taking jumd
across S(r) and making use of (2.1) and (1.6) we get,

& = a*g, (2.5)
where a is the isothermal velocity of sound. The functions 2, T, £ and 7 are defi-
ned over the wave front by the relations:

M= [ui g ny, C=lp,e]l mi, & =[p4lm, 1 = [Hil m.

Now putting the values of 7, £ and £ from equations (2.4), (2.9), (2.5) into
the equation (2.3) we get,

AM{—U2p + (1l +4Rpa2p + wH2 —4Rpa} =0 (2.6)

In view of the assumption that Sr) is a regular singular surface, we have
L # 0 and hence we have
U2 =ap | b2, (2.7

where b is the Alfven speed.

3. Growth Equation

Differentiating equation (1.2) with respect to x; and taking jump across S(z)
and making use of second order compatibility conditions [1] we get:
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In the present work it will be shown that it is natural to assume the transport
of discontinuities along bicharacteristic curves in the characteristic manifold 2 =
= US(r) of governing differential cquations. These bicharacteristics coincide with

t

orthogonal trajectories in the case of uniform medium at rest [13].

Using the genarilised geometrical and kinematical compatibility conditions
to evaluate (3.1) across a singular surface S(r) and simplifying we get,
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Similfrly from (1.1) and (1.2) we obtain
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where

ai = Wikl nine, ¢ = [ ming, & = [palnin, 0 = [Hylnin,

and (3/3¢) denotes differentiation along an orthogonal trajectory of the surface
S(¢), and Q is the mean wean curvature of S(¢) defined by 2Q = g™ b,z where
g** nad by are the first and second fundeamental forms of S(s) respectively.

Differentiating the state equation (1.5) twice with respect to x; and evaluating
across S(z) we get,
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Evaluating (1.4) across S(¢) and using (3.5) we get
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Eliminating ¢, ¥, 3¢ and 7 from equations (3.6), (3.3), (3.2) and (3.4) we
obtain
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The equation (3.7) is a differential equation for (U = pn) and, therefore,
one for 2, one for £ and one for 1, along the orthogonal trajectories of S(z). However,
the ,,inhomogeneous terms’ arising from the surface derivatives cause some diffi-
culty in interpretation and if we transform (3.7) into a differential equation along
bicharacteristics, this difficulty disappears. It is remarkable that the results for
two dimensioal systems in [14] and the results for three dimensional potential
flow in [15] utilize the bicharacteristic directions in order to avoid such comple-
xities.
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where (;’_) has the same meaning as in [10] and represents a material derivative
t

along bicharacteristic direction.
Now using equations (2.2), (2.4) and (3.8) in (3.7) we get
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4. Global behaviour of wave amplitude

The equation (3.9) is the fundamental differential equation for the growth
and decay of weak magnetohydroynamic discontinuities associated with the wave
surface S(z).

The solution of the equation (3.9) is given by
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The solution (4.10) shows that, whan Zo > 0, the wave amplitude T decrea-
ses continuously with time and vanishes ultimately. When Zy — 0, the wave ampli-
tude grows without limit and after finite critical time 7, a weak discontinuity breaks

down and a shock type discontinuity appears at time ¢, given by

‘ e :
[EREREEIFE
W : 2Ju )
0 .
2 .S Ll S
= U o | :
T PU( 2 ) S, (4.9)
Such that,
L () = 8,
Tt —1¢

The solution (4.1) of the growth equation shows the global behaviourof the
wave amplitude Z(r) on time ¢. The initial wave amplitude %o also plays an impor-
tant role in the formation of a shock wave. When the initial amplitude of a compres-
sive weak wave (T — 0) exceeds a critical value . given by

g, 2B (U)*I U HU_Q” (2 {Of(u)_ : (‘}s‘)_w

M e 0 0
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exp(m éjEdr)dt} (4.3)

then a shock wave will be formed at finite time ¢, given by (4.2). On the other hand
when %o > ., a strage for the shock formation will never appear and the wave
amplitude will decay with time.
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PROPAGATION DES DISCONTINUITES MHD FAIBLES LE LONG
DES  BICARACTERISTIQUES DANS UN MILIEU OPTIQUE EPAIS
DES MAGNETO-FLUIDES

Résumé

Dans ce travuil on considére les phenomeénes associés aux discontinuités d’un
cours non-stationnaire d’un tluide conducteur de chaleur et d’une conduction infinie
d’¢lectricité. On a obtenu et résolu analytiquement les équations différenticlles
fondamentales qui décrivent la croissance et la décroissance fondamentales qui
décrivent la croissance et la décroissance des discontinutés faibles le long des bicar-
actéristiques. Dans la discussion on présente le critére explicite de la décroissance
des discontinuités faibles et aussi le comportement global de ’amplitude de ’onde.

PROSTIRANJE SLABIH MHD DISKONTINUITETA DUZ BIKARAKTE-
RISTIKA U OPTICKI DEBELOJ SREDINI MAGNETOFLUIDA

Izvod

Rad se odnosi na aktuelnu oblast magnetohidrodinamike, a sadrzi rezultate
u vezi sa rasprostiranjem slabih diskontinuiteta u slucaju nestacionarnog strujanja
termicki provodljivog fluida sa beskonacnom elektri¢nom provodljivos¢u. U radu
su izvedene i reSene analiticki osnovne jednacine koje opisuju porast ili opadanje
slabih diskontinuiteta duz bikarakteristika. U diskusiji ovog reSenja izveden je
kriterijum za formiranje udarnog talasa i procenjeno je vreme koje je za to potrebno.
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