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1. Introduction

In the current practice the most common approach in the development of
finite elements is energetic. The minimum potential energy variational principle
is the most often applied approach. The stiffness matrix of an element is developed
by variation of the total potential energy.

The deformation shape function is required to be compatable. This requi-
rement sometimes is difficult to be fulfilled, (for instance in the shell problems).
Can be shown that, even in the case of compatable deformation shape function,
there are some approximations and neglections. Any variational principle involves
certain approximations, whish, quite often, is not clear of what character they are,
The comptuation of the potential energy involves two or three dimensional inte-
gration. Those integrations, for instance in the case of curved isoparametric ele-
ments, can be quite rough, and can lead to big errors.

All those difficulties can be overcamed by the approach which in short is
described in this paper.

2. The concept

The matrix equation of equilibrium of a certain problems is as follows

(K] {3} = {P} (D

where [K] is the stiffness matrix, {3} — vector matrix of the unknown nodal de-
formations, and {P} is the matrix of the external load.

The stiffness matrix can be understood as a matrix of influence coefficients,
which define the influence of the unit nodal deformations on the nodal forces.
It seems logical to define these coefficients by application of unit nodal deforma-
tions, giving unit value to one of the nodal deformations, while holding the others
equal to zero (Fig. 1).
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Fig. 1

On Fig. 1 is represented a plate bending element, on which a deformation
W1 =1 is given. Due to that deformation on the boundaries of the element there
apprear shear forces. In the case of linear variation of those forces, as on Fig. 1,
it is easy to find their distribution on the nodes 1 —4. So distributed forces at the
nodes actually give the stiffness coetticients K, Ki2, K13 and K4, corresponding
to the nodal deflections W,—W,. In that way, without any integration, one can
gat some of the stiffness coefficients.
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Along the element boundaries (Fig. 2) there are boundary forces, which are
in equilibrium with the external forces P. The finite elements are interconected
at the boundary nodes, and the final equations define the equlibrium of the forces
at those points. The task is to find the boundary forces and distribute them to the

nodes, (Fig. 2).
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The boundary forces actually are defined by the nodal deformations, as were
the shear forces due to W, = 1 on Fig. I. Instead of giving unit deformations for
all nodal deformations separately, it is more ocnvinient to define a complete field
deformation due to nodal deformations at once. That field of deformation can be
described for instance by a simple polinomial,

W =a1+ ax + asy + @ox* + ... (2)

That is so called deformation shape function. [t should be considered as a possible
given deformation. The opinion that this function is an approximate solution of
the problem is not quite all right, and has led to some conclusions, which are not
allways correct. Following the standard procedure in the finite element method
the coefficients a1 are expressed in terms of the nodal deformations.

Knowing the physical meaning of the equations which have to be developed,
it is easy to develop them. For instance, in the problem of plate bending, when
the unknows (,,degrees of freedom”) are the nodal deformations W, oW /ox, oW /oy,
those equations are the equilibrium equations of the normal forces V' and moments
Mx and My. So, by the third and second derivatives of the deformation shape
function (2), the boundary cuts are determined.

The distribution of the boundary cuts on the particular nodes can be as
follows. The deformation field, for instance the deformation due to Wi = 1 (Fig. 1),
represents influence surface for the normal force I at the node 1. The deformation
lines 1 —2 and 1—4 represent influence lines vor V1 also. Therefore, by multipli-
cation of the shear forces with the corresponding deformations w, the concentrated
force V1 is computed. That force is equal to the stiffness,

b a
Ku=[ Vg - Wiy-dy+[§ Vy:Wia-dx (3)
0 0

This equation can be understood as a work of the shear forces due to Wi = 1,
on the deformation due to W1 =1 also.

The distribution of the external load P (Fig. 1), to the element nodes, can
be by use of the influence surface, i.e. the deformation shaep function. It is defined
by the product of P with the deformation under the force. That product can be
understood as a work of the external load on the given deformation.

The total work defines the so called functional. The functional in the problem
of bending of plates is as follows,

Hp=fﬂ/fnfds—fV 5.5 il ” o5 e (4)

5 §

In that way the work of the internal forces, i.e. the potential energy U, is computed
by linear integration only, instead of area integration. In general, for any problem
the functional can be described as follows,

sz‘[}"s'w,g'd.g"'j‘p'ﬂ)'dﬂ (5)

where the first integral is a boundary integral of the all boundary forces Fg, on
the corresponding boundary deformations ws, and the second integral is a volume
integral of the external load p, on the corresponding deformations .
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The substitution of the potential energy U with the work of the boundary
cuts,

U=|[Fs- ws ds (6)
5

easily can be explained by the well known principle of the classical mechanics:
the work of the internal forces is equal to the work of the external forces. In this
case, in the development of the stiftness matrix, the boundary forces for the ele-
ment are external forces. In order this statement to be true, the deformation shape
function (2) should be simple, describing deformations which are due to given
nodal deformations. The functional (5) can be developed mathematically also.

The application of a functional of the form of expression (5) is simple. Never-
theless, it is better to apply the previously described procedure, by gviing unit
deformations. In that way the physical meaning of an operation is much easy to
follow.

Fig. 3

The described procedure for development of the element matrix can be
explained in the following way (Fig. 3) .The element can be imaged as a beam grid
interconected at the nodes. The forces acting on the beams are determined on the
base of the deformation shape function. Those forces have to be transfered to the
supports (nodes). The forces at a node, for instance node 1, which a function of
the nodal deformations, define the stiffness coefficients in a rwo, i.e. the stiffness
coefficients Ki;.

The distribution of the forces acting on the beams to the nodes can be on the
base of the beam theory. In the case of stiffness elements the beams should be
considered as built up at the nodes. The most easy way of distribution of those
forces to the nodes is the use of the deformation boundary lines due to unit nodal
deformation (as on Fig. 1), which, as was mentioned, represent influence lines.
In the clasical slope deflection method and three moments rule, instead of using
tables, in a simmilar way we compute the load terms.

In the case of three dimensional elements simmilar procedure can be used.
In that case the beam grid is three dimensional.
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By the application of the concept described, or the functional (5), some ad-
ditional terms, which are not present in the potential energy, are derived. In that
way an improved stiffness matrix is developed. The stiffness matrix correction
which in that way is derived, is a matrix with summ of the coefficients in a row
equal to zero. In the limit, when the size of the elements becomes small enought, the
contribution of that stiffness correction tends to zero. Therefore, the present ele-
ments, without this correction, give converging results. However, the inclusion
of the stiffness matrix correction is very important. With the corrected stiffness
clements one can get certain accuracy with much less computation that with the
elements without stittness correction. What is important, is that the results obtained
with so improved elements allways are reliable.

In the development of finite elements on the base of the approach described
here, by giving unit deformations or unit forces, a curious thing hase been noticed.
Some terms of the stiffness or flexibility matrix are not simmetric. That is,

Ky # Ky (7)

Some of them could have even different signes. The stiffness coefficeints derived
by the application of the potential energy actually are mean value, equal to (K;; -+
+ Kji)/2. However, the diagonal stiffness coefficients usually are dominant, and
they are very good, even they can be exact [4]. Therefore, the results derived with
average, simmetric matrix, are good. Nevertheless, some results derived with

the unsimmetric element matrix show slightly improved accuracy.

The deformation shape function does not have to be compatable. By the use
of boundary integration in the computation of the potential energy (5) the effect
of the boundary “discontinuity’ is taken into account. In that way the problem
of the compatibility actually does not represent any problem.

Some adventages the approach has in the development of the curved isopa-
rametric elements. More about it shall be given later on.

The deformation shape function must not be considered as an approximate
solution of the problem. It is a very bad base for computation of the stresses. The
stress matrix should be derived from the stiffness matrix and the effect of the distri-
buted load. Some preliminary results in the problem of plate bending show much
improvement in the stresses determined in that way.

3. Application

The approach presented we have applied for ddevelopment of a mixed element
for analysis of plate bending [3]. In that way several improvements were obtained.
The accuracy the element gives is very good, particulary the accuracy of the stres-
ses. Now development of stiffness elements for two dimensional analysis is in
progres. Preliminary results are promising, particulary the results for stresses.

The present concept in the development of isoparametric elements, with
more ore less (Gauss points of integration, is questionable. A correctly developed
element, with all factors influencing the element taken into account, the best results
should give at the node points, not at the Gauss points.

An improved isoparametric element can be developed by application of the
concept presented here (Fig. 4). The Gauss points now are along the boundaries.

Y
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The line integration which has to be applied should be much better than area
integration which has been used. -uch one curved mixed element for plate bending
analysis is under development. The element is simple one, with midside nodes
only for definition of the geometry.

e

Fig. 4

The concept has advantages in the solution of shell problems. In the deve-
lopment of shell elements it is very difficult to find a compatable deformation
shape function, which at the same time can describe rigid body motion also. With
the approach presented here this problem is easily overcamed. A simple mixed
shell elements based on this approach is under development.

The approach shortly outlined in the previous text should find application
in the solution of all types of problems, two and three dimensional. The present
two and three dimensional elements should be revised, although they give converg-
ing results. The reasons for this sugestion were given in the previous chupter of
this paper.

4, Conclusions

A new approach for development of finite elements for solid continua was
described. The approach is based on the soun 1 principles of the classical mechanics.
The potential energy is substituted with the work of the boundary forces. In that
way improved element matrixes are derived.

The proposed concept has some advantages over the present concept. It is
a simple one and gives better, allways reliable results. The deformation shape
function does not have to be compatable.

The concept should be applied for solution of all kinds of problems. Improved
elements, particulary curved isoparametric elements, should be developed.
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HOBBIM ITOIXO/ 1151 PASBUTHA KOHEUHUX 3JTEMEHTOB

Peomwme

IToTeHnMa/ IbHAS OHEPrHsT B JJIEMEHTC 3aMeHsIeTcs padoToi CHIT Ha IpaHHIax
asiemenTta (6). Takum 00pa3oM BKIIOOYAIOTCS JJOIIOJIHHTE/IBHBIE WJIEHDLI, KOTOpHE
B IIOTCHUIMATIEHOH 3HEPIHH HE CO/IEPyKATCsI, M 110J1YYAeTCTs YJIYUIlIeHHAs: MaTpula
YKECTKOCTH.

Dyukima gedopmManmil B oleMeHTe He 0 DKHA ObIT KommatuOmipHoi. Ha
OCHOBAHMM 3TOH (DYHKIMH OIIPE/e/IAI0TCS CHJILI Ha rpaHunax ajaemeHra (Puc 3.).
DJIEMEHT MOYKHO pa3cMaTpHBaTh Kax Obl CBs3aHHe y3/aM Oajkamu. OTH CHIIBI
IIEPEHOCSTCS B V3J0BBIX TOUKAaX M IIOIyYAIOTCA KOS(HIMEHTHI MATPHUILI 7KECT-
KOCTH.

dusnyecKoe 3HaUYEHHE MPOoO.IeMMBI BCEryla HaJ 0 HMEeTh B BHAY. PeKoMmeHy-
eCTCsT TPHUMEHEHHE TeopeMbl 00 OJUMHOYHONH AedopmManuy U OJMHOUHOH CHJIBI.
Taxkum 00pazom J/Is1 HEKOTOPBIX KOe(DHIIMEHTOB KECTKOCTH 1o.1yuatores Kij # Kji.

Pe3yapTaTel0  10J1YUEHHHME 9JIEMEHTAMH PA3BUTHX II0 TPEI0KEHHOMY I10/1-
XOJTy JIYUILME, M BCErjia UX MOyKHO Opath ¢ gosepueMm. IloaTomy HajI0 I10JIYUHTH
JIVUIIMX 37IEMEHTOB TI0 TIPEI0YKEHHOMY KOHIEUTY [UIA PEUICHHs BCCX THIIOB
3aj1a4. ITO OCOOEHHO CYILIECTBEHHO JUJIS M301IapaAMETPHUECKHX JJIEMEHTOB.

HOB TIPHMOII 3A PA3BHBAIIE HA KOHEYUHHM EJIEMEHTH
HaBonxa

IToreHnmasiHata eHeprija BO €JIEMEHTOT ce 3ameHyBa co padorara Ha 1pe-
CEUHHTE CHJIM HA I'paHummTe oj ejemeHtorT. Ha Toj HawiH ce BKIyUYBaT M HEKOU
JTOTIOJIHUTE/IHM UJIEHOBM, KOM BO IIOTEHINMja/IHATA €HEpPrHja HE Ce COJIpPyKar, il ce
Jo0uBa 10j00peHa MaTpUIla HA €JIEMEHTOT.

dyuknMjaTa Ha JiehopMAIMHITE BO €JIEMEHTOT He Mopa j1a Oujie kommatubiiiHa -
Ha ocHopanue Ha Taa (pyHKIIMja Ce OIIPE/e/yBaT IPECEUHUTE CH/IN HA I'DAHIIHTE
oj exemenror (Ci. 3). EnemeHTOT MOMKE JIa C€ CMeTa Kako rpejHa ckapa. Tue
CHJIM C€ IIPEHECYBAT BO ja3/I0BHTE TOUKH M Ce J00MBaT Koe(pUIHEHTHTE 0] MaTpi-
1aTa Ha KpyTocTa.

DU3MUKHOT CMICOJT Ha 3a7lauata cexoranr Tpeba ja ce uma Bo Bigt. Ce mperro-
pauyBa IIpMMeHATa Ha Teopemara 3a e/juieura jedopmariija M eJIMHEUHa CHa.
Ha T10j HaumH 3a HexoM KoeMIMEHTH HAa MATPHIATA HA €JIEMEHTOT c¢ /o0uBa
Ki; # Kji,
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Jlobuerire pesyITati co eeMeHTH pasBHEHH 110 HPEAI0ZKEHHOT IPHO,T CE
IOJLOOPH, H CEKOrall MOYKaT /{a ce IPUMAT Co JoBepda. 3aToa 10 Ipe/]I10ACHN0]
puoy  Tpeda Jla ce pasBuar mojio0pein eJICMEHTH 3d PEUICHHEe Hd CHTE THIIOBH
3ajlaur. ‘l'oa HAPOUHO BROKH 32 HI0MAPAMETPH JCKUTE €JIEMEHTH .
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