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1. Introduction

In the present work the first strain gradient theory of thermoelasticity of
porous solids is studied. The effects of variation of the solid volume fraction (one
minus porosity) are considered in the present theory. Based on the thermodynamic
consideration a set of constitutive equations are derived and the basic equations
of motion and heat transfer are obtained and discussed:

The linearlized equations for the propagation of small disturbances are also
investigated. It is observed that the shear wave is decoupled from the porosity and
irrotational waves; however, the latter two waves are coupled even in the absence
of thermal effects. The dispersion relations are obtained and briefly discussed.

Laws of motion

The basic laws of motion of a continuum with microstructures as derived
for example in [1, 2]

Conservation of Mass

op
5;+(ij),1=0 (2.1)

Balance of Linear Momentum
Tik,j -+ of ke = p dik (2.2)
Balance of Angular Momentum
wiji+ ek Tei +pCy=0 (2.3)
Balance of equilibrated force

hii+g+ ol =pkv (2.4)
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Conservation of Energy
pe= -’lrjk djk + P-.? 1\::; + id-_s'fk f\’iﬂc + hi‘;,i—g-v + qi,i + ph (2.3)
Entropy Inequality

0 N—(qr/0),k —ph/6>0. (2.6)

In these equations p is the mass density of the porous solid; k the equilibrated iner-
tia; vy = ux the velocity vector, u; the displacement vector; 7jk the stress tensor;
ti; the couple stress tensor; fi the body force per unit mass; e;j the alternating
tensor; C; the body couple per unit mass; /; the equilibrated stress vector; v the
solid volume fraction which is equal to one minus porosity; / the equilibrated force
per unit mass; g the internal unit mass; the absolute temperature; g¢; the heat flux
vector pointing outward ;7 the entropy density per unit mass;;; the deviatoric part of
the couple stress tensor; wij the symmetrized double stress tensor. The stress ten-
sor Ty is given by

Ik = T(iky + (hisk, s (2.7

where 7, is the symmetric part of 7jx. The strain tensor &;;, the deformation rate
tensor dj; and the microstrain tensors K;; and Ky are defined by
1 1
Eij = “5 (u(,j +usi)=cgn, dis = ? (Z)i,; + v5,4) = dji (2.8)

- | .
Kij = T itk Uk i = Gradient of rotation (Kj;=0) (2.9)

— 1 =
Kijk = 3 (k15 + vi 3k + g i) = Kjki = Kiig = Kiji

= Symmetrized second gradient of displacement. (2.10}

The equations of balance of linear and angular momenta (2.2) and (2.3) could
be combined. Evaluating the antisymmetric part of the stress tensor from equation
(2.3) and substituting the result into equation (2.2), it follows that

1
Tk 5 g ekt ofk — ekt (eCh)s = p tik. (2.11)

From the definition of the solid volume fraction it follows that

g —=pou, (212)

where go is the mass density of the solid material. If go is constant, that is, the solid
being incompressible, from equation (2.1) it follows that

ov
a-i—(v v;),j =0 (2.13)

Introducing the Helmholtz free energy ¢
¢ =e—0qy (2.14)
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and eliminating ch between equations (2.5) and (2.6), another form of the Clau-
sius-Duhem inequality is found, i.e.

. . - - = = . § |
— (b + 0+ Tk dyi+ D Kig + e Kigge + hi vi—g v+ 5k 9>0. (2.15)

Throughout this paper the regular Cartesian tensor notation has been employed
with superposed dot indicating the material time derivative and indices following
a comma denoting partial differentiations.

3. Constitutive equations

The following set of constitutive equations is now proposed :

U= (0, v, vsis €iss Kisy Kiji)s Tig=Ti7 (o0

wl=p .. =gk Go el Bi=h (oo,
g=g (... qi=q (.. n=70(...) (3.1)

where the principle of equipresent is employed and the dependent constitutive
variables are assumed to be functions of the same set of constitutive independent
variables.

Evaluating t;) from equation (3.1) and substituting in equality (2.15), the resultis

(aqz )9 o oy Lo
—¢l3g + 7 %—(-;u——pdsk1 +p— i v;1) dk1+p P V1 0 kD

()L!J L = ()!.IJ s
+ (P«? - P‘“—‘“)Kw + (R =—p =" ) Kijk
0Ky 0Kk

o\ . oY\ . 1
- (hk —p—a—v—;) V,k'—( g+e ‘;) v + o 0,>0 (3.2)

where v, 1y is the antisymmetric part of the velocity gradient tensor, and the
identity

d "
P Vok = Vsk—V,j Uik £3.3)

has been employed.

The entropy inequality (3.2) must hold for all independent variations of

. 3 = . ; oy
0, dri, vk1y, Kis, Kisks vseand v. It then tollows that P Vi is a symme-
sk

tric tensor and

oy
7]":"_()_6: (34)
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- Y oy

Ly g dvIv’l E p—d—:: (3.5)
0

g = 5 (3.6)

= oy

Rijk=p—="> (3.7)
oKk
0y

hy=p P (3.8)

o
and inequality (3.2) reduces to
1
5 2 9r=>C. (3.10)

Equations (3.7) —(3.9) are the general constitutive equations for a poro-elastic
solid.

For a homogeneous isotropic media, the most general form of a positive defi-
nite Helmholtz free energy function which leads to a set of linear constitutive equa-
tions is

: , e B(v) 1
Py =p¥e—p Mol ———— T2—y(Veus T+ — Aesi 55 + 2ueqjei;
2T, 2
- — P s i S 3 ST — — S i)
+ 241 K45 Kij+ 232 Kij Kj£+'_2‘a1 Kiij Kkkj + 2Kk Kijk
_ 1
+feik Kij Kinn+ov) vk vak + = @0V + bo v €ii (3.11)
where
T=06-T (3.12)

and T is the temperature of the natural state.

Employing expression (3.11) for the free energy into equations (3.4) — (3.9)
the explicit constitutive equations are obtained

1="10+B T/To+7 ciifp, (3.13)
g = (Aeti +bo v—yT) dpg+ 2uepg— 2% vp v,q (3.14)
ul =441 Kpq+ 4d2 Kep + Tepai Kijis (3.15)

vzer = a1 (Kitr 8pq+ Kitp 8gr + Kt 8¢5) + 282 Kpar

N =
3 Tf Kij (3pq eisr+ Ogr €ijp+ Srp €ig), (3.16)
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hi = 20 v k5 (3173
do dvy 1 dp
iy b J - e B 3.18
g d\)v,k v,k + d\} €ii T 2To dv T ado V bﬂ Eif ( )

Note that in the derivation of equation (3.18), p and v are treated as independent
variables.

Employing constitutive equations (3.14) — (3.16) into equation (2.11) it
follows that

0 r:-i_; +bo YV—V (yT)—2y. (ayvyy) + (A + 2u) (l—llzv2) LA

1 o
—p (=B vxyxutef+5Vx(eQ) (3.19)
The use of constitutive equations (3.17) and (3.18) into equation (2.4) yields
do dvy 1 dB

- _ da dy B a
pkv=2v. (ayv) 5 vv. Vv +dvv.1iT 3T, dvT %o V bov.g+pl (3.20)

To find the equation of heat transfer, we first notice that the equation of conser-
vation of energy (2.5) by the use of relationships (2.14), and (3.4) —(3.9) becomes

0O n=v.g+ph (3.21)
Assuming a simple Fourier law for heat conduction,

q= FORAS (3.22)

and employing constitutive equation (3.13), equation (3.21) reduces to

d
p0 - BT/TotyVUe)=V. (kv T)+ph (3.23)

which is a generalization for heat conduction equation.
The following restrictions are imposed on the coefficients [3]

w>0, M+2u>0, —A1<d2=ds

Gy >0, 5a1+2d,>0, 572<6(di—dz)(5a1+2a2),

a >0, b2<Ah

a>0, >0, v>0, x>0 (3.24)
with

B=3a+ 2a3)/(A+2p) > C

2=(3d1+ @ +2@—f)3u >0 (3.25)

Equations (3.19),(3.20) and (3.23) together with equation (2.1) form six equations
for the six unknown %, v, T and p.
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4. Linearized equations of motion

Within the limits of linear theory, assuming that the material moduli o, B,
Y and k are constant and the variations of temperature, density and solid volume
fraction and displacement are small, equations (3.19), (3.20) and (3.23) in the absence
of body force, equilibrated force and body couple become

pU=—yVT+boyv+(A+2u)(1—1 V) yv.u

—uw(I—=B V) vxyxuy (4.1)
pkv=20ay2v—agv—by . u, (4.2)
eB T+yTov.u=Fkvy? T+ oh (4.3)

Equations (4.1) — (4.3) are five equations for finding five infinitesimal unknowns
u, v and T.

In the absence of heat source, introducing the scalar and vector potentials
¢ and A so that

Uu=veo+yx4, (4.4)
equation of heat transfer becomes

PBT+yTovie=kV? T. (4.5)
Equation (4.1) in terms of potentials decouples into two equations,

pe=—YT+bov+(+2p) (1= V) V2o, (4.6)

pA=p (I—Bv?) V2 A. (4.7)

Equation (4.2) in terms of potential becomes
pk'\;=2aV2v —ag v—>bo V2 o. (4.8)

Equations (4.5) —(4.8) are a set of couples wave equations and heat transfer in
the poroelastic media.

In the absence of heat transfer, dropping the thermal effects, the equations
of wave propagation in a poroelastic medium become

?=C} (1B V) V2g+bov, (4.9)
4=C (1-B v V2 4, (4.10)
i _ ko

v=C? ¢ v——aov——gvz Q. (4.11)

The speeds of irrotational wave (P-wave) C1, shear wave C and porosity wave Cs
are defined by

A+2p

Cf= p F]
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CE:i’
R
2

It is observed that the shear wave is decoupled from the other two and that it satis-
fies a dispersion relation

w?=C2 (1+2 K?) K? (4.13)

where o is the frequency and K is wave vector. The irrotational wave and the poro-
sity wave are coupled and they jointly satisty the following dispersion relation:

7 K

[C? (141 K2) K2—a?] (C? K2+ Gy—w?) = (4.14)

The amplitude of the porosity wave vp is related to that of the irrotational wave
®¢ according to

_ e 0= Kz)-w(-)?
Bo

Vo

Po- (4.15)

When /; and I are taken to be zero, the first strain gradient effects are eliminated
and equations (4.5) — (4.8) govern the thermoelasticity of porous media in the
absence of couple and double stresses. Equations (4.9) —(4.11) then become the
corresponding wave propagation equations in poroelastic media. Equations (4.13) —
— (4.15) then become simply,

= C% KZ’ (4:16)
(C1 K2—w?) (C3 K2+ Gp—a?)=b; K[k (4.17)
C? K2—w?
Yo = —l——_——?o, (4. 1 8)
bo

Equations (4.16) and (4.17) give the dispersion relations for the shear wave and
coupled irrotational and porosity waves. It will be observed that the coupled irro-
tational and porosity waves are dispersed. The relationship between the amplitudes
now is given by equation (4.18).
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ERSTE DEHNUNGSANSTEIGSTHEORIE DER THEROMELASTIZITAT
VON PORQSEN KQRPERN

Zusammenfassung

Eine erste Dehnungsansteigstheorie fir die thermoelastizitit des porosen
Korpers wird formuliert. In dieser Theorie ist der Effect der Abinderung der
Volumenfraktion auch enthalten. Die Materialgleichungen werden abgeleitet und die
Grundgleichungen von Bewegung und Wirmelbertragung werden geschrieben
und diskutiert. Die Ausbreitung der kleinen Storungen nird untersucht und die
Streuungs-relationen fiir die harmonische Wellenausbreitungen werden dargelegt.

GRADIJENTNA TEORIJA TERMOELASTICNOSTI
POROZNIH SREDINA

Izvod

Formulisana je gradijentna teorija termoelasti¢nosti poroznih sredina. U
predlozenoj teoriji uveden je efekt promene zapremine ¢vrste frakcije. Izvedene
su konstitutivne jednacine kao i osnovne jednacine kretanja i provodenja toplote
1izvr$ena njihova diskusija. [zu&en je problem prostiranja malih poremecaja i postav-
liene disperzione relacije za prostiranje harmonijskih talasa.
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