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Abstract. In this paper, we address the problem of the controlled motion
of a roller racer on a plane. We assume that the angle between the platforms
is a given periodic function of time (control function), and the no-slip condi-
tions (nonholonomic constraint) and viscous friction forces act at the points
of contact of the wheels with the plane. In this case, all trajectories of the
reduced system tend asymptotically to a periodic solution. In this paper, we
show that for a selected periodic control function, there exists a motion of the
system that is bounded (along a circle) and unbounded (along a straight line).
An unbounded motion corresponds to the resonant case which takes place at
zero average value of the control function. The theoretical dependence of the
trajectory and the velocity of the roller racer on its parameters and the pa-
rameters of the selected control function is investigated. These dependences
are confirmed experimentally.

Introduction

In this paper, we address the problem of the controlled motion of a roller racer.
The roller racer is a system consisting of two platforms connected to each other
(by means of a cylindrical hinge). The platforms can freely rotate in the horizontal
plane independently of each other. Each platform has a wheel pair that is rigidly
fastened to it and consists of two wheels lying on the same axis, which can freely
rotate independently of each other. The forward motion of the roller racer is enabled
by periodic oscillations of the platforms relative to each other.

In describing the dynamics of the system, we assume that there is no slipping at
the points of contact of the wheels with the plane. In this case, each wheel pair can
be replaced with a knife edge, which is located at its center of mass and prohibits
sliding in the direction perpendicular to the plane of the wheels. The equivalence
of such systems is shown in [1] using a vehicle with two rotating symmetric wheel
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pairs as an example. The no-slip condition and the replacement of the wheel pair
with a knife edge are also used in investigating the dynamics of a roller racer (a
wheeled vehicle with fastened wheel pairs) in [2, 3], a wheeled vehicle with two
rotating wheel pairs (snakeboard) in [4–6], and in investigating wheeled vehicles
consisting of three and more platforms (a literature review can be found in [7,8]).

Classical papers on the dynamics of wheeled vehicles include [9–12]. These
studies are concerned with various models of a motor vehicle with a fastened rear
axle (the model of a platform with two wheel pairs, one of which is fastened) and the
simplest two-link vehicles. The dynamics of a snakeboard is explored in [13–18].

In the most general case, the free dynamics of a roller racer is investigated in [2].
Equations of motion on a plane are obtained and it is shown that, in the general
case, the motion relative to a fixed coordinate system is asymptotic: except for the
straight-line motion, the trajectories tend to circles and the motion is bounded.
The asymptotic stability of straight-line motions for the case where the center of
the system’s mass is at the point of attachment of the platform is analyzed in [12].

In [3,19–22] the controlled motion of a roller racer is investigated. It is assumed
that the angle between the platforms (the control function) is a given periodic
function of time. In [3] it is shown that a periodic change in the angle can lead
to unbounded acceleration. It is proved that, in the general case, in the presence
of viscous friction forces at the point of contact of the wheels with the plane (see
also [19]), there is no constant acceleration. In [20,22], the controlled motion of
the roller racer is considered taking into account Coulomb’s friction between the
wheels and the plane of motion. In [21] it is assumed that each of the two platforms
of the roller racer additionally has a rotor whose angular velocity is a given periodic
function of time. It is shown that, in this case, it is possible to achieve acceleration
at which the velocity of the system increases as t1/3 and the system moves on
average along a strip bounded by two straight lines.

We also mention the studies [23,24] concerned with the controlled motion of the
roller racer performed by the periodic displacement of one or several point masses,
located on the leading platform, relative to the symmetry axis of this platform.

A comparison of theoretical and experimental results on the controlled motion
of the roller racer in the case of straight-line motion with viscous friction is presented
in [25,26].

In [3] it is proved that in the case of viscous friction and a periodic control
function all trajectories of the reduced system tend asymptotically to a periodic
solution. In this paper, we carry out a theoretical and experimental investigation
of the trajectories of the roller racer which correspond to these periodic solutions,
depending on the control parameters and the mass-geometric characteristics of
the system.

This paper is structured as follows. In Section 1 we specify the main design
features and the assumptions under which the dynamics of the roller racer is ex-
amined and the corresponding equations of motion are derived. In Section 2 we
analyze the steady-state periodic regime of motion, to which all motions of the
roller racer tend asymptotically. Possible trajectories of the system and conditions
for their existence are described. In Section 3 we give examples of periodic control
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functions and the corresponding bounded and unbounded trajectories of the point
of connection of the platforms of the roller racer to each other. In Section 4 we
analyze the dependence of the average velocity of motion of the roller racer along
a straight line on the control parameters and the mass-geometric characteristics
of the roller racer. In Section 5 we present a comparison of the theoretical and
experimental results obtained for the motion of the roller racer along a straight line
and along a circle.

1. Equations of motion

Consider the problem of a roller racer moving on a plane. The roller racer
consists of two platforms connected to each other (by means of a cylindrical hinge),
which can freely rotate in the horizontal plane independently of each other (see
Fig. 1). Each platform has a wheel pair rigidly fastened to it and consisting of
two wheels lying on the same axis and rotating independently of each other. The
forward motion of the roller racer is enabled by periodic oscillations of the platforms
relative to each other.

A scheme of the roller racer on the plane is shown in Fig. 1, in which the
following notation is used: P is the point of connection of the platforms to each
other, A1 and A2 are the positions of the centers of mass of the first and the
second platform, and C1 and C2 are the positions of the centers of mass of the
corresponding wheel pairs. The notation of the main quantities used in this paper
is presented in Table 1.

Figure 1. The roller racer on a plane

To analyze the dynamics of the system, we define three coordinate systems:
— an inertial coordinate system Oxy in which the plane Oxy coincides with

the plane of motion (Fig. 1);
— a noninertial coordinate system C1x1y1 rigidly fastened to the first plat-

form, with origin C1 at the center of mass of the wheel pair. We direct
the axes C1x1 and C1y1, respectively, along the tangent and the normal
to the plane of the wheels;
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Table 1. Symbols

φ the angle between the axes C1x1 and C2x2 (the orientation of the
platforms relative to each other)

ψ the angle between the axes Ox and C1x1 (the orientation of the
first platform relative to the fixed coordinate system)

r = (x, y) the radius vector of the point of attachment of the platforms, P ,
in the fixed coordinate system Oxy

c1, c2 distances from the center of the first and the second wheel pair to
point P

a1, a2 distances from point C1 to the center of mass of the first platform
and from point C2 to the center of mass of the second platform

m1, m2 the masses of the first and the second platform

I10, I20 the moments of inertia of the first and the second platform relative
to their centers of mass (points A1 and A2)

I1, I2 the moments of inertia of the first and the second platform relative
to point P

κ1, κ2 coefficients of viscous friction of the first and the second platform

b1, b2 distances from the point of contact of the wheels to the center of
mass of the corresponding wheel pair

h1, h2 the radius of the wheels on the first and the second platform

— a noninertial coordinate system C2x2y2 rigidly fastened to the second
platform, with origin C2 at the center of mass of the wheel pair, and
with the axes directed along the tangent and the normal to the plane of
the wheels.

We specify the main design features and the assumptions under which we ex-
amine the dynamics of the roller racer.

— Assume that the center of mass of the first and the second platform (points
A1 and A2) lie, respectively, on the axes C1x1 and C2x2 (see Fig. 1).

— The orientation angle φ of the platforms relative to each other is a given
periodic function of time (with period T ).

— As the roller racer moves, there is no slipping at the points of contact of
the wheels with the plane.

In [1] it is shown that, in wheeled vehicles of the type considered here, each
wheel pair can be replaced with a weightless knife edge which is located at its center
of mass and prohibits sliding in the transverse direction (relative to the plane of
the wheels).

Thus, the configuration space Nq of the system under consideration is defined
by the generalized coordinates x(t), y(t), ψ(t), which specify the position of point P
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and the orientation of the first platform relative to the fixed coordinate system Oxy:

Nq = {q = (x, y, ψ), ψ mod 2π} ≈ R2 × S1.

We will describe the dynamics of the system by the quasi-velocities v = (v1, v2)
and ω, where v is the velocity of point P referred to the moving coordinate system
C1x1y1, and ω is the absolute angular velocity of the first platform. The quasi-
velocities are related to the generalized velocities by

(1.1) v1 = ẋ cosψ + ẏ sinψ, v2 = −ẋ sinψ + ẏ cosψ, ω = ψ̇.

The angles of rotation of the wheels relative to their axes ϕij(i, j = 1, 2) can
be recovered, if necessary, by the integration of equations [1,3]:

h1ϕ̇11 = b1ψ̇ − ẋ cosψ − ẏ sinψ, h1ϕ̇12 = −b1ψ̇ − ẋ cosψ − ẏ sinψ,

h2ϕ̇21 = b2(φ̇(t) + ψ̇)− ẋ cos(φ(t) + ψ)− ẏ sin(φ(t) + ψ),(1.2)

h2ϕ̇22 = −b2(φ̇(t) + ψ̇)− ẋ cos(φ(t) + ψ)− ẏ sin(φ(t) + ψ).

Nonholonomic constraints expressing the absence of slipping at the points of
contact of the wheels have the form [3]:

(1.3) f1 = v2 − c1ω = 0, f2 = −v1 sinφ(t) + v2 cosφ(t) + c2(ω + φ̇(t)) = 0.

The kinetic energy of the entire system can be represented as

T =
1

2
M(v21 + v22) +m1(a1 + c1)v2ω +

1

2
I1ω

2 +
1

2
I2(φ̇(t) + ω)2

+m2(a2 − c2)(v2 cosφ− v1 sinφ)(φ̇(t) + ω),

where M = m1 +m2 is the mass of the entire system.
To investigate the influence of the friction force on the dynamics of the roller

racer, we will consider the simplest model of viscous friction [19,27]. Suppose that
the forces of viscous friction with the Rayleigh function act at the points of contact
of the wheels with the plane:

R =
1

2

(
κ1ϕ̇

2
11 + κ1ϕ̇

2
12 + κ2ϕ̇

2
21 + κ2ϕ̇

2
22

)
,

where ϕ̇ij(i, j = 1, 2) are the angular velocities of rotation of the wheels. Taking
into account relations (1.1), (1.3) and the quadratures for the angular velocities
of rotation of the wheels (1.2), the Rayleigh function written in terms of quasi-
coordinates has the form

(1.4) R = µ1(b
2
1ω

2 + v21) + µ2(b
2
2(φ̇(t) + ω)2 + (v1 cosφ+ v2 sinφ)

2),

where µ1 = κ1/h
2
1, µ2 = κ2/h

2
2 are the reduced viscose friction coefficients.

Remark 1.1. The proposed model describes the rolling friction torques and
the viscous friction torques which arise in bearings as the wheels rotate on their
axes. Incorporation of such a friction torque does not lead to violation of the no-slip
condition. A similar friction torque which does not violate the no-slip condition
was considered in the Chaplygin sphere rolling problem [28].



44 KILIN, IVANOVA, KARAVAEV, AND YEFREMOV

The equations of motion taking into account the constraints (1.3) and the
friction forces described by the Rayleigh function (1.4) can be written as [1,3]:

d

dt

( ∂T
∂v1

)
− ω

∂T

∂v2
=

2∑
i=1

λi
∂fi
∂v1

− ∂R

∂v1
,

d

dt

( ∂T
∂v2

)
+ ω

∂T

∂v1
=

2∑
i=1

λi
∂fi
∂v2

− ∂R

∂v2
,(1.5)

d

dt

(∂T
∂ω

)
+ v1

∂T

∂v2
− v2

∂T

∂v1
=

2∑
i=1

λi
∂fi
∂ω

− ∂R

∂ω
,

where λ1 and λ2 are undetermined multipliers.
To calculate the undetermined multipliers, we solve the constraints (1.3) rela-

tive to the velocities ω and v2 and differentiate them with respect to time. Then,
we substitute the resulting dependences v̇2(v1, v̇1, t) and ω̇(v1, v̇1, t) into the last
two equations of the system (1.5). Solving the resulting equations, we obtain the
dependence of the undetermined multipliers on v1, v̇1 and time. We do not present
here the explicit expressions for λ1,2(v1, v̇1, t) since they are fairly cumbersome.

Remark 1.2. The constraints (1.3) can be solved for the velocities ω and v2
under the condition

(1.6) c1 cosφ+ c2 ̸= 0.

Condition (1.6) is satisfied for any control function φ(t) at c1 > c2. If c1 ⩽ c2,
then in defining the control function it is necessary to choose its parameters in such
a way that condition (1.6) is always satisfied. Or it is necessary to choose from
the very beginning other quasi-velocities for describing the dynamics of the roller
racer. This can always be done, for example, by changing the numbering of the
platforms.

Substituting the resulting undetermined multipliers into the first of equations (1.5),
we obtain the following equation governing the evolution of the translational veloc-
ity v1 of the first platform:

(1.7) v̇1 =
(
A(t)− C(t)

)
v1 +B1(t) +B2(t)−D(t),

where

A(t) = − φ̇ sinφ(J1S2 + δS1)

S1(J1 sin
2 φ+MS2

1)
, B1(t) =

φ̈ sinφ(J1c2 − J2S1)

(J1 sin
2 φ+MS2

1)

B2(t) =
φ̇2(J1c1c2 sin

2 φ− S1(c1δ cosφ− εc2S1))

S1(J1 sin
2 φ+MS2

1)

C(t) = 2
(b21µ1 + b22µ2) sin

2 φ+ µ1S
2
1 + µ2S

2
2

J1 sin
2 φ+MS2

1

,

D(t) = 2
φ̇ sinφ

(
c1µ2(b

2
2 − c22) cosφ− c2(b

2
1µ1 + c21µ2)

)
J1 sin

2 φ+MS2
1

,

S1 = c1 cosφ+ c2, S2 = c1 + c2 cosφ.
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Here, to abbreviate the formulae, we introduce the following notation:
δ = c1a2m2 + c2a1m1, ε = m1a1 + c1m2,

J1 = I10 + I20 +m1a
2
1 +m2(a

2
2 + c21 − c22), J2 = I20 −m2(c

2
2 − a22).

Expressing the velocity v2 from the first of the constraint equations (1.3) and
substituting it into relations (1.1), we obtain the following system of equations on
the configuration space Nq:

(1.8)

ψ̇ =
v1 sinφ(t)− c2φ̇(t)

c1 cosφ(t) + c2
,

ẋ = v1 cosψ − c1
v1 sinφ(t)− c2φ̇(t)

c1 cosφ(t) + c2
sinψ,

ẏ = v1 sinψ + c1
v1 sinφ(t)− c2φ̇(t)

c1 cosφ(t) + c2
cosψ.

The resulting system of equations (1.7)–(1.8) describes the behavior of the roller
racer in the case where the angle φ(t) between the platforms is a given function
of time.

In this case, the nonautonomous equation (1.7) governing the evolution of ve-
locity v1 decouples from the system (1.7)–(1.8). Thus, the reduced system reduces
to one nonautonomous linear differential equation whose solution depends on the
form of the control function and the parameters of the roller racer.

2. Analysis of the steady-state regime of motion

Let us write equation (1.7) for brevity as

(2.1) v̇1 = −Φ(t)v1 +Ψ(t),

where Φ(t),Ψ(t) are functions which for the case of T -periodic control functions
φ(t) are also periodic with the same period T .

In [3] it is proved that in this case the following statement holds.

Proposition 2.1. For the positive coefficients (of friction) µ1 > 0 and µ2 >
0, equation (2.1) has a particular time-periodic solution v1 = Q(t) to which all
trajectories of this equation tend asymptotically as t → +∞. The solution Q(t) is
given by:

Q(t) =
1

P (t)

(
1

(P (T )− 1)

∫ T

0

Ψ(τ)P (τ)dτ +

∫ t

0

Ψ(τ)P (τ)dτ

)
,

where

P (t) = exp

(∫ t

0

Φ(τ)dτ

)
.

The particular time-periodic solution v1 = Q(t) corresponds to the steady-
state motion of the roller racer. Next, we analyze the trajectories of the point
of attachment of the platforms relative to the fixed coordinate system during the
steady-state motion depending on the parameters of the control function.That is
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to say, assume that
v1(t) = Q(t).

To analyze the position and orientation of the system, we make use of a com-
plex representation for the configuration variables (x, y). In order to do this, we
introduce a new variable

Z(t) = x(t) + iy(t).

The system of equations (1.8) can be written as

(2.2) ψ̇ = FT (t), Ż = eiψ(t)
(
Q(t) + ic1FT (t)

)
,

where FT (t) is a bounded function which is also T -periodic for T -periodic control
functions φ(t):

(2.3) FT (t) =
Q(t) sinφ(t)− c2φ̇(t)

c1 cosφ(t) + c2
, FT (t) = FT (t+ T ).

As is well known, the general solution of equation (2.2) for the function ψ(t) is
represented in this case as

(2.4) ψ(t) = Ωψt+ ψT (t) + ψ0,

where Ωψ is a constant which is defined as the average over a period of the function
FT (t), ψT (t) is a T -periodic function with zero average (over period T ), and ψ0 is
a constant:

Ωψ = ⟨FT ⟩ =
1

T

∫ T

0

FT (τ)dτ,

ψT =

∫ t

0

(FT (τ)− Ωψ)dτ −
1

T

∫ T

0

dτ

∫ τ

0

(FT (z)− Ωψ)dz,(2.5)

ψ0 = ψ(0) +
1

T

∫ T

0

dτ

∫ τ

0

(FT (z)− Ωψ)dz.

Substituting (2.4) into the equation for Ż in (2.2) and making elementary
transformations, we obtain

(2.6) Ż = ei(Ωψt+ψ0)HT (t),

where HT (t) = eiψT (t)(Q(t) + ic1FT (t)) is a bounded T -periodic function. We
represent it as a Fourier series expansion:

(2.7) HT =
∑
k∈Z

Ake
iΩkt, Ω =

2π

T
,

where Ak are (complex) constants, coefficients of expansion of the function HT :

Ak =
1

T

∫ T

0

HT (τ)e
−iΩkτdτ.

Substituting the expansion (2.7) into the equation for Ż (2.6), we obtain

(2.8) Ż = eiψ0

∑
k∈Z

Ake
i(Ωψ+Ωk)t.
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To define the trajectory of the point of attachment P of the platforms relative
to the fixed coordinate system, we integrate (2.8). The result of this integration
depends on whether there exists a k such that the argument of the exponential
function in (2.8) vanishes. We single out two cases in which the behavior of the
system will be qualitatively different.

(1) Nonresonant case: Ωψ +Ωk ̸= 0 for all k ∈ Z.
(2) Resonant case: there exists a k = k∗ such that Ωψ +Ωk∗ = 0.

Let us analyze the trajectories of the system in each of these cases.

2.1. Nonresonant case. Assume that there does not exist a k such that Ωψ+
Ωk = 0. In this case, integrating equation (2.8), we obtain

(2.9) Z(t) = Z(0) + eiψ0

∑
k∈Z

−iAk
Ωψ +Ωk

(ei(Ωψ+Ωk)t − 1).

Without loss of generality, we will assume that Z(0) = 0. Then, according to (2.9),
in the reference frame that rotates about the point with the coordinates

(2.10) Z0 = eiψ0

∑
k∈Z

iAk
Ωψ +Ωk

with the angular velocity Ωψ, the trajectory of the point of attachment P of the
platforms is a closed curve defined by the bounded T -periodic function

(2.11) Z̃(t) = eiψ0

∑
k∈Z

−iAk
Ωψ +Ωk

eiΩkt.

In this case, the average value of the distance R̄ from point P to Z0 is defined
as a zero harmonic of the series (2.11):

(2.12) R̄ =

∣∣∣∣A0

Ωψ

∣∣∣∣, A0 =
1

T

∫ T

0

HT (τ)dτ.

In this case, R̄ is the radius of the circle (with the center at point Z0) along which
point P moves on average in the absolute coordinate system Oxy. The average
linear velocity of motion along this circle is

(2.13) V̄ =
ΩψT mod 2π

T
R̄.

In the fixed coordinate system the trajectory of point P can be closed or non-
closed, depending on the value of the ratio Ωψ/Ω.

1. If Ωψ/Ω ∈ Q is a rational number, i.e., if it can be represented as the ratio
p/q, p, q ∈ Z, q ̸= 1, then the function Z(t) is q T -periodic, the trajectory
of point P becomes closed after q periods of control (examples of such
trajectories are shown in Fig. 3a,b).

2. If Ωψ/Ω ∈ R\Q is an irrational number, then the trajectory of point P
is a nonclosed curve consisting of equal segments traced out in period T ,
which, for each period, turn relative to the center Z0 by angle ΩψT (see
Fig. 3c).
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Let us formulate the results presented above in the form of the following state-
ment.

Proposition 2.2. Let Ωψ+Ωk ̸= 0 for all k ∈ Z. Then the point of attachment
P of the platforms moves on average in a circle of radius R̄ (2.12) with the center at
point Z0 (2.10). If exist coprime integers l, k ∈ Z, (l ̸= 1) such that lΩψ + kΩ = 0,
then the trajectory of point P is closed. Otherwise, point P moves along a bounded
quasi-periodic curve.

2.2. Resonant case. Assume that there exists a k = k∗ such that Ωψ+Ωk∗ =
0. We will call this value k∗ and the corresponding trajectory resonant.

In this case, we represent equation (2.8) as

(2.14) Ż = eiψ0Ak∗ + eiψ0

∑
k∈Z,
k ̸=k∗

Ake
i(Ωψ+Ωk)t,

where Ak∗ is the expansion coefficient corresponding to k = k∗.
Integrating (2.14) gives

(2.15) Z(t) = eiψ0Ak∗t+ eiψ0

∑
k∈Z,
k ̸=k∗

−iAk
Ωψ +Ωk

(ei(Ωψ+Ωk)t − 1).

Thus, in contrast to the case discussed in Section 2.1, a term (linearly) grow-
ing with time appears in the function Z(t) defining the trajectory of the point of
attachment P of the platforms.

It follows from (2.15) that point P moves on average with the velocity

(2.16) V∗ = |Ak∗ |

along a straight line in the direction

(2.17) ψ∗ = ψ0 + argAk∗

relative to the axis Ox. In this case, in the reference frame moving with velocity
V∗ in the direction ψ∗, the trajectory of the point of attachment P of the platforms
is a closed curve defined by a bounded T -periodic function (see Fig. 5):

(2.18) Z̃∗(t) =
∑
k∈Z,
k ̸=k∗

−iAk
Ω(k − k∗)

eiΩ(k−k∗)t.

The resonant expansion coefficient Ak∗ depends on the parameters of the con-
trol function and the characteristics of the roller racer and can take zero value. In
this case, the point P moves in a closed bounded trajectory (see Fig. 7) defined by
the function

Z(t) = Z0 + Z̃∗(t),

where Z0 is defined by the sum (2.10) at all k ̸= k∗.
Let us formulate the results presented above in the form of the following state-

ment.
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Proposition 2.3. Assume that there exist k∗ ∈ Z for which Ωψ + Ωk∗ = 0.
Then

— if the corresponding expansion coefficient is Ak∗ ̸= 0, the point of attachment
P of the platforms moves without bound on average along a straight line turned at
angle ψ∗ (2.17) relative to the axis Ox with the average velocity V∗ (2.16);

— if the corresponding expansion coefficient is Ak∗ = 0, point P moves along
a closed bounded trajectory defined by the function (2.18).

Next, we consider specific periodic control functions φ(t) and give examples of
resonant and nonresonant trajectories of the roller racer.

For numerical calculations we will use the following mass-geometric parameters
of the roller racer which correspond to a full-scale specimen described below in Sec-
tion 5, taking into account the relation between the mass-geometric characteristics
of the platforms with wheel pairs and skates [1]:

(2.19)

m1 = 0.647 kg, a1 = 0.065 m, c1 = 0.186 m, I01 = 0.0044 kg ·m2,

m2 = 0.587 kg, a2 = 0.0023 m, c2 = 0.044 m, I02 = 0.0038 kg ·m2,

b1 = b2 = 0.0078 m, µ1 = µ2 = 0.3 kg/s.

The design of the roller racer allows changing the mass of the second platform
by adding additional weights into special compartment symmetric relative to the
center of mass of the second platform. Therefore, in analyzing the dependence of
the velocity of the roller racer on the mass-geometric characteristics of the roller
racer we will use different values of the parameters of the second platform which
correspond to different numbers of additional weights.

3. Examples of steady-state motions
3.1. The choice of a control function. The orientation of the platforms

of the roller racer relative to each other is defined by periodic function φ(t) with
some average value. Also, the rate of change in angle φ(t) near this average value
(the rapidity of relative motion) can be different, with the other control parameters
(amplitude and period of motions) being constant.

Such controls can be modeled, for example, by the following continuous differ-
entiable function, which will be considered as a control function in this paper:

(3.1) φ(t) = α
2π

T

∏N
n=1(2n+ 1)∏N

n=1 2n

∫
cos(2N+1)

(2πt
T

)
dt+ φ0,

where α, T and φ0 are constants. The multipliers in front of the integral in (3.1)
are defined in such a way that the maximal deviation of the function φ(t) from φ0

is equal to α and N is an integer defining the rapidity of motion. The larger N ,
the closer to the vertical the tangent to the function φ(t) at t = 0, T/2, see Fig. 2.
The case of the control function (3.1) with N = 0 (which is just a sine function) is
discussed also in [3].

3.2. Bounded motion. Consider examples of trajectories of the roller racer
which correspond to the control function (3.1) with parameters at which Ωψ+Ωk ̸=
0 for ∀ k ∈ Z.



50 KILIN, IVANOVA, KARAVAEV, AND YEFREMOV

Figure 2. Graphs of the function φ(t) for N = 0 and N = 5,
α = 0.4 rad, φ0 = 0.1 rad

In this case, the point of attachment P of the platforms of the roller racer
moves on average in a circle (see Proposition 2.2). The radius and the position
of the center of the circle are determined from relations (2.10) and (2.12). The
roller racer moves along this circle with the average linear velocity V̄ (2.13). As
examples, we show in Fig. 3a,b closed periodic trajectories for N = 0 and N = 5,
and in Fig. 3c we show a quasi-periodic trajectory for N = 0. Figure 4 shows the
dependences V̄ (2.13) and R̄ (2.12) on period T for different values of φ0 and N
and the corresponding trajectories of point P .

The graphs shown in the figure and the analysis of the quadratures (2.2) yield
the following conclusions.

– An increase in the parameter φ0 leads to a decrease in the radius of the
circle along which point P moves on average, without significant changes
in the velocity of motion along this circle. Hence, in Fig. 4a,d we show
for each N only one dependence graph V̄ (T ) for φ0 = 0.2 rad. The other
graphs in the chosen scale have almost no differences from those presented
in Fig. 4a,d.

– An increase in the period of control, T , leads to a decrease in the velocity
of motion along the circle without significant changes in the radius of
this circle.

– The value of R̄ changes slightly with an increase in N and with other
parameters fixed (see Fig. 4b,e with equal values of φ0 and T ), but the
angular velocity V̄ increases (see Fig. 4a,d with equal values of T ), i.e.,
an increase in the rapidity of motion (the velocity of change of sign of
the function φ(t) in the middle of the period) leads to an increase in the
velocity of motion along the circle.

3.3. Unbounded motion. Next, we consider examples of bounded and un-
bounded resonant trajectories of the roller racer in the case of control functions of
the form (3.1).

In the general case, the search for the parameters of the control function which
correspond to the resonant trajectory reduces to solving the equation (see Propo-
sition 2.3)

(3.2) Ωψ(N,T, α, φ0) + 2πk∗/T = 0.
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Figure 3. Examples of trajectories of point P for α = 0.5 rad,
φ0 = 0.3 rad: a) N = 0, T = 0.4 s, p = 1, q = 30, the trajectory
becomes closed after q periods of control, b) N = 5, T = 1 s,
p = 1, q = 30, the trajectory becomes closed after q periods of
control, c) N = 0, T = 0.25 s, the trajectory is quasi-periodic and
bounded

Figure 4. a), d) Graphs showing the dependence of the average
linear velocity V̄ (T ) of motion along a circle, b), e) the average
distance R̄(T ) of point P on (x0, y0) depending on period T , and
c), f) the trajectories of point P at α = 0.5 rad, φ0 = 0.1 rad,
φ0 = 0.2 rad, φ0 = 0.3 rad and N = 0 (above), N = 5 (below)
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Fixing, for example, the parameters N,T and φ0, one can numerically de-
termine the value of α at which for the chosen k∗ relation (3.2) is satisfied. If
for the found parameters the corresponding coefficient Ak∗ ̸= 0, the trajectory is
unbounded.

Figure 5 shows examples of such trajectories for k∗ = −1 and the corresponding
closed trajectories defined by relation (2.18) (in the reference frame moving with
velocity V∗).

Figure 5. Trajectories of point P for k∗ = −1 (Ωψ = Ω), in the
fixed reference frame (left) and the reference frame moving with
velocity V0 (right). Parameters of the control function: T = 0.05 s,
φ0 = 0.5 rad. Characteristics of the trajectory: a) ψ∗ = 1.12 rad,
V0 = 36 m/s; b) ψ∗ = 2.54 rad, V0 = 30.5 m/s

The resonant parameters of the control function which correspond to the bounded
trajectory of the system are defined from relation (3.2) under the additional con-
dition V∗ = 0. We note that for specific mass-geometric parameters of the roller
racer this problem may or may not have a solution in the general case.

Of all values of k∗ we consider in more detail k∗ = 0 because in this case
equation (3.2) reduces to searching for values of the parameters of the control
function at which Ωψ = 0.

3.3.1. The case k∗ = 0. In [25] it is shown analytically that in the case of
control action φ(t) of the form (3.1) with φ0 = 0 the function FT (2.3) is T -
periodic with zero average value over a period. According to (2.5), this implies
that for φ0 = 0, no matter what the value of the other parameters of the control
function (3.1), the angular velocity is Ωψ = 0.

Thus, according to (3.2), it suffices to fix the value φ0 = 0 in the control (3.1)
in order to obtain a resonance at k∗ = 0.

In [25], it is also proved that, when φ0 = 0 (and hence when k∗ = 0), the
following relations hold for the coordinates (x̃, ỹ) of the point of attachment P of
the platforms of the roller racer in the reference frame Ox̃ỹ rotated by angle ψ∗
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(2.17) relative to the inertial reference frame Oxy:
x̃(t) = V0t+X(t), ỹ(t) = Y (t),

X(t) = X(t+ T/2), Y (t) = Y (t+ T ),

where V0 = V∗ with k∗ = 0 is the average velocity of the straight-line motion, which
is expressed analytically in terms of the integral

(3.3) V0 =
2

T

∫ T/2

0

(
Q(t) cosψT (t)− c1

Q(t) sinφ(t)− c2φ̇(t)

c1 cosφ(t) + c2
sinψT (t)

)
dt.

The value of ψT (t) is determined from relation (2.5) with Ωψ = 0:

ψT (t) =

∫ t

0

FT (τ)dτ −
1

T

∫ T

0

dτ

∫ τ

0

FT (z)dz.

Examples of unbounded trajectories of point P for different values of the pa-
rameters of the control function with V0 ̸= 0 are shown in Fig. 6.

When V0 = 0, the point of attachment P of the platforms moves along a
bounded self-intersecting trajectory (since Ωψ = 0). Examples of such trajectories
for different parameters of the control function are shown in Fig. 7.

Figure 6. Trajectories of the point of attachment P of the plat-
forms for k∗ = 0 (φ0 = 0, Ωψ = 0). Parameters of the trajec-
tory: a) ψ∗ = 0.00018 rad, V0 = 0.024 m/s, y0 = 0.00072 m; b)
ψ∗ = 0.00025 rad, V0 = 0.0595 m/s, y0 = 0.00239 m; c) ψ∗ =
0.00028 rad, V0 = 39.3 m/s, y0 = −0.041 m; d) ψ∗ = 0.0008 rad,
V0 = 5.11 m/s, y0 = −0.057m

4. Analysis of the average velocity of motion for k∗ = 0

Next, we estimate the influence of the control parameters and the mass-geomet-
ric characteristics of the system on the value of the average velocity V0 (3.3). This
estimate allows us to form a control ensuring the maximal velocity of motion for
the prescribed mass-geometric characteristics of the roller racer or, alternatively, to
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Figure 7. Self-intersecting trajectories of point P for k∗ = 0
(φ0 = 0, Ωψ = 0). Parameters of the control function: a) N = 0,
T = 2 s, α = 2.465 rad; b) N = 5, T = 0.05 s, α = 0.9998 rad

optimize the design for the given technically bounded controls. We consider these
cases separately.

4.1. Fixed mass-geometric parameters. Consider the dependence of the
average velocity of motion of the roller racer V0 (3.3) on the control parameters
(3.1).

Without loss of generality, in this case, we can assume period T to be equal to
unity. This corresponds to the choice of units for measuring time and follows from
invariance of equations (2.1) and (2.2) under the change of variables

(4.1) t→ Tt, v1 → v1/T, µ1 → µ1/T, µ2 → µ2/T.

Thus, a change in the period is equivalent to scaling the friction coefficient. The
dependence of velocity V0 on the friction coefficient will be considered below in
Section 4.2.

Figure 8 shows the surface of the dependence V0(α,N) for T = 1 s, obtained
by numerical simulation with the parameters (2.19).

The resulting dependences allow the following conclusions:
– the average velocity of motion V0 increases with an increase in the value

of N ;
– there exists an optimal value of the amplitude α of the function φ(t) for

the prescribed mass-geometric parameters of the roller racer at which the
average velocity of motion V0 is maximal.

For example, when φ0 = 0, T = 1 s and N = 0, the maximal value of the
velocity V0 = 0.247 m/s is reached at α = 1.384 rad, and when N = 5, the
maximal velocity V0 = 0.439 m/s is reached at α = 1.136 rad.

Thus, the maximal velocity of motion can be reached at some optimal value of
the amplitude of the control action and at the largest possible value of N , which
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Figure 8. Dependence V0(N,α) for φ0 = 0, T = 1 s and the
parameters (2.19)

in practice corresponds to the rotation of the second platform relative to the first
platform with the maximal angular acceleration.

The largest possible value of N depends on the performance capabilities of the
roller racer. Besides, in carrying out experimental investigations, account should
be taken of the fact that, as the value of N increases, so do the constraint reaction
forces, see (1.5). This can lead to slipping at the points of contact with the plane.

4.2. Fixed control parameters.
4.2.1. Dependence of the motion velocity of the roller racer on the mass of the

second platform. In this section, we investigate the dependence of the velocity of the
straight-line motion of the roller racer on the mass of the second platform without
changes in the control parameters. For definiteness, we choose the following fixed
control parameters:

(4.2) N = 5, α = 0.9 rad, φ0 = 0 rad, T = 1 s.

As was noted above, the design features of the full-scale specimen of the roller
racer allow this to be done by adding weights into special compartment placed on
the second platform. In this case, the value of the moment of inertia I20 will change
as well. But, since its changes are completely determined by changes in the mass,
we will not present the corresponding surface in the space (m2, I20, V0), present
only its projection onto the plane (m2, V0) for the fixed control parameters (4.2).

The resulting dependence V0(m2) is shown in Fig. 9, which implies that the
average velocity of motion V0 increases with an increase in the mass of the second
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platform without changes in the geometric parameters of the roller racer to some
optimal value.

Thus, despite the fact that the possibility of slipping diminishes as the mass of
the system increases, there exists an optimal value of the mass that corresponds to
the largest possible (with other parameters specified) value of the average velocity.

Figure 9. Graph showing the dependence V0(m2) of the velocity
of motion of the roller racer with the control parameters (4.2). As
initial values of the mass and the moment of inertia of the second
platform we have taken the values (2.19)

4.2.2. Dependence of the velocity of motion of the roller racer on the friction
coefficient. Another parameter on which velocity V0 depends considerably is the
reduced viscose friction coefficients µ (in this case we assume µ1 = µ2 = µ). This
is a parameter that can be determined experimentally and depends on the charac-
teristics of the materials of the wheels of the roller racer and the surface on which
it rolls.

Figure 10a shows numerically calculated dependences of the velocity of motion
of the roller racer on the friction coefficient V0(µ) for two different controls, with
N = 0 and N = 5. As one would expect, the larger the friction coefficient, the
smaller the velocity of motion V0.

From the transformation (4.1) it follows that the dependence V0(T ) with µ fixed
is the same as V0(µ) with T fixed. Thus, if the reduced viscose friction coefficients
are predetermined (for example, in the experiment), to increase the velocity V0, it
is necessary to decrease the value of period T , see Fig. 10b.

5. Experimental results

At the Laboratory of Mobile Systems (Kalashnikov Izhevsk State Technical
University), a prototype of the roller racer has been built using the equipment of the
Common Use Center of the Udmurt State University to verify the simulation results.

The values of the mass-geometric parameters were calculated from the 3D
model of the roller racer in the software product Solid Works (Fig. 11), see (2.19).

The motion of the prototype was performed on a plane surface. To film the tra-
jectory and to recover the relative angular position of the platforms, light-reflecting
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Figure 10. Graph showing the dependence of the velocity of mo-
tion on the reduced viscose friction coefficients V0(µ) of the roller
racer for α = 0.4 rad, φ0 = 0 and the parameters (2.19): a) for
N = 0 and N = 5 with T = 1 s, b) for N = 0 with T = 0.5 s
and T = 1 s

markers of the motion capture system VICON were placed on the large (1) and the
small (2) platform (see Fig. 11a).

In the experiments, account was taken of restrictions on the maximal relative
turning angle of the platforms. For this specimen, the maximal angular displace-
ment is α = 1.4 rad.

Furthermore, the torque curves and the speed performance of the servodrive
used are technically limited and allow turning the platforms with control at N < 6.

Another design feature that cannot be disregarded is the deviation of the ex-
perimental value of φ0 from the prescribed one. Specifically, in the course of
experiments, we obtained from the coordinates of the markers the small value
φ0 ∽ 10−2 rad for the input value φ0 = 0. As shown above, this leads to a devia-
tion from the generally rectilinear motion.

In the course of experimental investigations, as in the course of simulations, a
comparison was made of the average velocity of motion of the roller racer, which
was reached by the prototype in the process of motion from the state of rest. In

2

a) b)

1

Figure 11. a) 3D model and b) picture of the full-scale specimen
of the roller racer
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recovering the experimental trajectories of motion, the stage of acceleration was
not taken into account.

In addition, to exclude random factors such as the initial position and local
surface irregularities, for each set of control parameters and for each design of the
roller racer, a series of eight experiments were carried out. Later, for each series,
we calculated averaged values and the corresponding confidence intervals.

The experimental verification of the dependence of the velocity of motion of
the roller racer on the control parameters was performed for two configurations:
with parameters (2.19) and with additional weights on the second platform. The
corresponding parameters have the following values:

(5.1)
m2 = 0.853 kg, a2 = 0.0015 m, c2 = 0.044 m,

I02 = 0.0077 kg ·m2, b2 = 0.0078 m.

5.1. Straight-line motion. A typical trajectory of the straight-line motion
of the point of contact, P , of the platforms of the roller racer and the corresponding
variation curve of the average velocity of motion are shown in Fig. 12.

Figure 12. Comparison of the experimental results (black dashed
curves) and simulation (red solid curves) of the motion of the roller
racer for the parameters (2.19) and the control parameters α =
0.7 rad, T = 1 s, N = 0 (a) and N = 5 (b). Left: trajectories of
motion. Right: the corresponding variation curves of the average
velocity of motion

The observed deviation of the experimental trajectory from generally rectilin-
ear motion is due to the above-mentioned deviation of the experimentally obtained
value of φ0 from the prescribed value. Specifically, for the prototype under con-
sideration, at the prescribed value φ0 = 0 the experimentally observed value was
φ0 = 0.0018 rad for N = 0 and φ0 = −0.0033 rad for N = 5. This value was taken
into account in simulation, and, as can be seen from the pattern of the trajectory
obtained according to the simulation results, the trajectory repeats qualitatively
the experimental results.
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The value of the reduced viscose friction coefficients µ shown in Fig. 12 cor-
responds to the theoretical curve and was chosen in such a way that the deviation
of the theoretical trajectory from the experimental one was minimal. We note
that, in practice, the process of determining the values of the coefficients of viscous
friction is rather time-consuming, and for an exact quantitative agreement of the
model it is necessary to carry out experiments for each pair of materials and for
each regime of motion. This is why in this paper we verified the agreement of the
experimental data with the theoretical data in the range of values of the coefficients
µ = 0.2 − 0.35 kg/s [29]. The tabular values of the rolling friction coefficient for
materials similar to those used in this paper lie in this range.

Local surges in the variation curve of the velocity (see Fig. 12, right) are caused
by errors of equipment, errors of differentiation of discrete data, and by local irreg-
ularities, which decelerate or accelerate the motion of the prototype in some path
segments. The behavior of the velocity of motion of the roller racer, including that
in the initial stage, before reaching a periodic solution, is in qualitative agreement
with numerical results.

1◦. To verify the dependence of the velocity of motion along a straight line on
the control parameters (N and α), a series of experiments for the roller racer with
the parameters (2.19) and the following sets of control parameters were carried out:

1. N = 0, T = 1 s for α = 0.7 rad and α = 0.9 rad;
2. N = 5, T = 1 s for α = 0.5 rad and α = 0.7 rad.

Figure 13 shows the results of the experiments and the numerically calculated
curves of dependence V0(N,α) (see also Fig. 8) for values of the friction coefficient
corresponding to the boundaries of the above-mentioned range (shown as dashed
lined). In the chosen range of values of α (smaller than the optimal one at the
prescribed value of N) the obtained experimental results qualitatively confirm the
theoretical results: as the parameters of the control function, α and N , increase, so
does the average velocity of the straight-line motion of the roller racer. Note that
the experimental values, including the confidence intervals, lie inside the regions
bounded by the theoretical curves. This implies that the proposed model with
viscous friction provides an adequate qualitative and quantitative description of
the straight-line motion of the roller racer.

2◦. To investigate the influence of the mass-geometric parameters on the ve-
locity of the prototype of the roller racer, a series of additional experiments were
conducted at N = 0, T = 1 s, φ0 = 0 α = 0.7 rad and α = 0.9 rad for the roller
racer with the parameters (5.1).

The corresponding experimental results shown in Fig. 14 confirm qualitatively
the theoretical results: as the mass of the second platform increases, so does the
average velocity of the straight-line motion of the roller racer.

The experimental values, including the confidence intervals, lie inside the re-
gions bounded by curves which correspond to the boundary values of the friction
coefficient. This indicates a quantitative agreement between theory and experi-
ment. The small confidence intervals (for example, at α = 0.9 rad and at the
parameters (5.1)) correspond to good repeatability of the experimental results.
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Figure 13. Dependences of the velocity of motion of the proto-
type of the roller racer with the parameters (2.19) on the parame-
ters of the control functionN and α with T = 1 s (the experimental
values with confidence intervals are shown). The dashed line shows
the graphs obtained numerically for different values of the friction
coefficient.

Figure 14. Comparison of experimental and theoretical values of
the velocity of motion of the roller racer in the case of different
masses of the second platform for α = 0.7 rad (a) and α = 0.9 rad
(b), N = 0, T = 1 s, φ0 = 0. The theoretical curves V0(m2) (shown
as dashed lines) are plotted at the same parameters for two values
of the coefficients of viscous friction µ = 0.2 kg/s and µ =
0.35 kg/s.

5.2. Motion along a circle. A typical trajectory of the point of contact, P ,
of the platforms of the roller racer along a circle and the corresponding variation
curve of the average velocity of motion are shown in Fig. 15.

The local oscillations in the variation curve of the angular velocity are caused
by surface irregularities, which decelerate or accelerate the motion of the prototype
in some path segments. The behavior of the velocity of motion of the roller racer,
including that in the initial stage, is in qualitative agreement with the numerical
results. The value of the friction coefficient µ shown in Fig. 15 corresponds to
the theoretical curve and has been chosen in such a way that the deviation of the
theoretical trajectory from the experimental one is minimal.
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Figure 15. Comparison of the results of experiments (black
dashed curves) and modeling (red solid curves) of the motion of the
roller racer along a circle for the parameters (2.19) and the control
parameters α = 0.7 rad, T = 1 s, N = 0 (a) and N = 5 (b). Left:
trajectories of motion. Right: the corresponding variation curves
of the angular velocity of motion Ωψ(t)

Figure 16. Dependences of the angular velocity of motion Ωψ
of the prototype of the roller racer with the parameters (2.19)
on the parameters of the control function N and α at T = 1
s (the experimental values with confidence intervals are shown).
The dashed lines represent the graphs obtained numerically at the
same parameters for different values of the friction coefficient.
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To verify the dependence of the angular velocity of motion along a circle on the
control parameters (N and α), a series of experiments were conducted for the roller
racer with the parameters (2.19) and the following sets of control parameters:

1. N = 0, T = 1 s, φ0 = 0.47 rad with α = 0.7 rad and α = 0.9 rad;
2. N = 5, T = 1 s, φ0 = 0.47 rad with α = 0.5 rad and α = 0.7 rad.

Figure 16 shows the results of experiments and the numerically calculated
curves of dependence V0(N,α) for values of the friction coefficient which corre-
spond to the boundaries of the above-mentioned range (shown as dashed lines). In
the chosen range of values of α (smaller than the optimal one at the prescribed
value of N), the obtained experimental results confirm qualitatively the theoretical
results: as the parameters of the control function, α and N , increase, so does the an-
gular velocity of motion of the roller racer along a circle. The experimental values,
including the confidence intervals, lie inside the regions bounded by these curves.
Thus, in the case of motion along a circle (as in the case of motion along a straight
line) the proposed model with viscous friction provides an adequate qualitative and
quantitative description of the motion of the roller racer.

Conclusion

In this paper, we have investigated the controlled motion of a roller racer on a
plane depending on the control parameters and the mass-geometric parameters of
the system. It is shown that, for the chosen periodic control function, there exists
a bounded (along a circle) and an unbounded (along a straight line) motion of the
system. Unbounded motion corresponds to the resonant case which takes place at
zero average value of the control function.

It is shown that the average velocity of the straight-line motion increases with
decreasing period of the control function and with increasing rapidity of motion
(the maximal angular velocity of rotation of the platforms relative to each other).
Furthermore, for the prescribed mass-geometric parameters of the roller racer there
exists an optimal value of the amplitude α of the relative oscillations of the platforms
at which the average velocity of motion, V0, is maximal. These dependences have
been determined theoretically and confirmed experimentally.

In this paper, it is shown experimentally that the model of nonholonomic mo-
tion chosen to describe the system and taking the viscous friction torque into ac-
count provides an adequate description of the observed motion. The trajectory
of the full-scale specimen of the roller racer is in qualitative agreement with the
theoretically calculated trajectory.

The design of the prototype of the roller racer used in the experiments allows
changes in the mass of the second platform. Also, the changes occur in the position
of the center of the system’s mass and in the corresponding moments of inertia. In
this paper, it is shown theoretically and experimentally that, as the mass of the
second platform increases to some optimal value, so does the velocity of motion of
the roller racer.

To optimize the design of the roller racer, it would be interesting to experi-
mentally investigate the dependence of the velocity of its motion along a straight
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line on the mass of the second platform without changes in its moment of inertia
and, alternatively, the dependence of the velocity on the moment of inertia of the
second platform without changes in its mass.

It would also be of special interest to optimize the design of the roller racer and
the control actions taking into account both the results obtained in this paper and
a possible switching of one or several wheels of the roller racer to the sliding mode.
This requires an analysis of constraint reactions arising at the points of contact of
the wheels with the plane of motion.
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ТЕОРИJСКА И ЕКСПЕРИМЕНТАЛНА ИСТРАЖИВАЊА
КОНТРОЛИСАНОГ КРЕТАЊА РОЛЕР-РЕJСЕРА

Реиме. У овом раду бавимо се проблемом контролисаног кретања ролер-
реjсера по равни. Претпостављамо да jе угао између платформи дата периодич-
на функциjа времена (управљачка функциjа), а услови неклизања (нехолоном-
но ограничење) и силе вискозног трења делуjу у тачкама контакта точкова и
равни. У овом случаjу све траjекториjе редукованог система асимптотски теже
ка периодичном решењу. У овом раду показуjемо да за изабрану периодичну
управљачку функциjу постоjи кретање система коjе jе ограничено (дуж кру-
га) и неограничено (дуж праве). Неограничено кретање одговара резонантном
случаjу коjи се одвиjа при нултоj просечноj вредности управљачке функциjе.
Истражуjе се теориjска зависност путање и брзине ролер-реjсера од његових
параметара и параметара изабране управљачке функциjе. Ове зависности су
потврђене експериментално.
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