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POINT SPECTRA AND NORMAL MODES
OF THE RAYLEIGH LOADED STRING

WITH DAMPING

Francesco Fassò, Sara Galasso, and Antonio Ponno

Abstract. We describe the point spectra of some dissipative version of the
celebrated “Rayleigh loaded string”, an elastic string of finite length carrying
a number n ⩾ 1 of equally spaced, equal point masses, which is a basic model
that exhibits a band structure and appears in many applied areas. We con-
sider the case in which the dissipation is due to a viscous damping due to
the interaction string-environment, a standard model for internal visco-elastic
dissipation (the Kelvin–Voigt model), and their combined presence. We show
that the point spectrum of each of these damped versions of the Rayleigh
loaded string is a continuous deformation of the point spectrum of the un-
loaded elastic strings with that damping and that presents a band structure
similar to that of the undamped case. We also provide explicit analytical
expressions for the eigenfunctions, for any value of n.

1. Introduction

1.1. Aim and motivations. The Rayleigh’s loaded string, or simply the
loaded string, [4, 7, 20, 22, 25] is an elastic string with fixed ends and a certain
non-homogeneous density distribution, which is assumed to perform small trans-
verse oscillations under the influence of no forces except for the (constant) string
tension. The non-homogeneity is due to the presence of a number n ⩾ 1 of localized
point masses (“loads”) along the string.

One of the reasons for interest in this system is that it is an instance of a “lo-
cally periodic system”, a class of systems whose spectral properties are of significant
interest in various areas of physics, and have received great attention in the physics
literature (see [7] for an introduction). Cases with any number of loads, variously
distributed along the string, have been considered in connection with the forma-
tion of conduction bands, Anderson localization and other classical and quantum
phenomena [10,20].
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In the simplest case, which is the one we will consider here, the masses are
equal and equally spaced and their introduction is well known to give the spectrum
a band structure [7,12,22]. Specifically, the spectrum is a continuous deformation
of that of the uniform (“unloaded”) elastic string, with deformation parameter the
ratio µ̂ := m

M between the mass m of the loads and the mass M of the string, and
is organized in bands of n + 1 eigenvalues. Each band is formed by one of those
special eigenvalues of the unloaded string which have nodes at the locations of the
point masses, and of other n eigenvalues which tend to it as µ̂ grows.

The aim of the present paper is to investigate the effect of various types of
dissipation on the point spectrum of the loaded string. We are mainly interested in
the case in which the elastic string is replaced by a viscoelastic string, with internal
damping, but we will also consider the cases of viscous external damping and the
combined effect of the two. Specifically, we will consider the standard “Kelvin–
Voigt” model of viscoelastic string [8,23,24], which introduces in the wave equation
for the transversal string displacement ψ a term γ̂ψtxx, with a constant γ̂ > 0, and
the standard model (Heaviside’s “telegrapher” equation [11]) of external damping
which introduces in the wave equation a term −β̂ψt, with a constant β̂ > 0. The
string with both sources of dissipation has been studied, e.g., in [15]. The point
spectra of the unloaded strings with these types of dampings, which depend on
β̂ and γ̂, are known (see e.g. [17, 18, 23]). Their eigenvalues are given by two
functions, parametrized by β̂ and γ̂, of those of the undamped elastic string. We
will call these two functions the “spectral map”.

More generally, the spectral properties of damped elastic strings and of similar
systems, with various types of non-uniform dampings (particularly of the Kelvin–
Voigt type) and non-homogeneous densities, have received ample attention in the
mathematical literature in the last decades, and many general results are known,
e.g. on the localization of the spectrum in the complex plane, the accumulations
of the eigenvalues, the existence of a Riesz basis, etc. (see e.g. [3,9,13–15,17,18,
23,26] and references therein). However, it seems to us that considering the limit
case of a (uniformly) damped string with equal, concentrated inhomogeneities at
equally spaced points, where everything can be made explicit, has some interest.

For instance, our interest for this problem originated from a study of the long-
time dynamics of a chain of n ⩾ 1 pendula hanging from a viscoelastic string [6].
Upon linearization around the equilibrium configuration, such a system decouples
into two linear subsystems, one of which is precisely the Kelvin–Voigt viscoelas-
tic loaded string that we consider here. The other subsystem can be viewed as
a Kelvin–Voigt viscoelastic string with n harmonic oscillators of a certain (non
generic) type attached to it. A detailed knowledge of the spectra of these two
systems is, thus, a prerequisite for the study of the string carrying the pendula.
However, because of some relevant differences between them (and also the non-
genericity of that specific Kelvin–Voigt case), we find it clearer to study them
separately.
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1.2. Results. We will focus on the dependence of the damped spectra on the
mass of the loads, namely, on the parameter µ̂, and show that it has a well defined
band structure.

Specifically, we will first show that, for each β̂ and γ̂, the eigenvalues of the
damped loaded string with a certain µ̂ are given by the same “spectral map” of the
unloaded damped string, but evaluated on the eigenvalues of the Rayleigh string
with that µ̂.

As a consequence, for each β̂ and γ̂, the spectrum is a continuous deformation,
with deformation parameter µ̂, of the spectrum of the unloaded string with those
β̂ and γ̂. As µ̂ grows, the eigenvalues move, in the complex plane, on a “spectral
locus” which is determined by n, β̂ and γ̂. (For given n, β̂ and γ̂, such a spectral
locus can be seen as the union of the point spectra of the damped loaded string for
all µ̂ ⩾ 0). This process produces the formation of bands in the spectrum.

Each band contains one of those special eigenvalues of the, now damped, un-
loaded string with that β̂ and γ̂ whose eigenfunctions have nodes at the locations
of the point masses, and other n eigenvalues which move towards it, making the
band narrower, as µ̂ grows, and cluster to them as µ̂→ +∞.

In addition, we will derive explicit expressions for the eigenfunctions, which are
valid for all n (and, to our knowledge, are new even in the undamped case).

1.3. Organization of the paper. In Section 2 we describe the system under
study. In Section 3 we review the spectra of the damped unloaded strings and
determine their spectral loci which, as explained above, are the starting point for
the description of the spectrum of the damped loaded strings. In Section 4 we
study these spectra; preliminarily; however, we review in detail the structure of the
spectrum of the Rayleigh loaded undamped string (β̂ = γ̂ = 0, µ̂ > 0) whose eigen-
values determine those of the damped loaded strings with the same µ̂. Section 5 is
devoted to the eigenfunctions.

Unless stated differently, by “spectrum” we mean “point spectrum”.

2. The system

2.1. The undamped and damped loaded strings. Rayleigh’s loaded string
is a planar homogeneous elastic string of finite length and fixed ends which carries
n point masses, which we assume to be equally spaced and with the same mass m.
The only force acting on the system is the elasticity of the string, whose tension τ
is assumed to be constant. We denote M the mass of the (unloaded) string, L its
length, and ρ =M/L its constant linear density. The string is supposed to perform
transverse displacements and its configuration at each time t is, thus, described by
an embedding (with standard regularity properties, see below) of the form

[0, L] ∋ x 7→ (x, ψ(x, t)) ∈ R2

where ψ : [0, L]×R → R satisfies the boundary conditions ψ(0, t) = ψ(L, t) = 0 ∀t.
The point masses are attached to the points of the string with material coordinate
x given by 1

n+1L,
2

n+1L, . . . ,
n

n+1L. The equation governing the dynamics of the
system is given, e.g., in [4, equation (40)], and, after the inclusion of a viscous
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dissipative term β̂ψt and of a Kelvin–Voigt dissipative term −γ̂ψtxx, with positive
constants γ̂ and β̂, takes the form

(2.1) ρψtt − τψxx +m

n∑
j=1

ψttδ jL
n+1

− γ̂ψtxx + β̂ψt = 0, ψ(0, t) = ψ(L, t) = 0.

Here, for any a ∈ R, δa(x) := δ(x− a) denotes the translated Dirac delta.
In order to slightly simplify the equations that determine the eigenvalues, we

use dimensionless space and time coordinates x̃ := (n + 1) xL , t̃ := (n + 1) πL

√
τ
ρ t

(which we will keep on denoting x, t) and parameters

β :=
L

n+ 1

β̂

2π
√
ρτ
, γ :=

n+ 1

2

πγ̂

L
√
ρτ
, µ :=

n+ 1

2

m

M
.

After this (unusual) rescaling, the fundamental frequency π
L

√
τ
ρ of the elastic string

of length L is 1
n+1 . The inclusion of the factor n+1 in the rescalings and parameters

prevents its appearing in some conditions, particularly in the quantity ξβ,γ defined
below. Also, after the rescaling, the string has length n + 1, the point masses are
at the points

xj := j, j = 0, . . . , n+ 1,

and equation (2.1) becomes

(2.2) π2ψtt−ψxx+2µπ2
n∑

j=1

ψttδxj
+2βπ2ψt−2γψtxx = 0, x ∈ (0, n+1), t ∈ R,

with the boundary conditions

(2.3) ψ(0, t) = ψ(n+ 1, t) = 0 ∀t ∈ R.

We consider equations (2.2), (2.3) for β ⩾ 0, γ ⩾ 0 and µ ⩾ 0. We call them
the damped (undamped, if β = γ = 0) loaded (unloaded, if µ = 0) string Sβ,γ,µ.

2.2. Weak formulation. Consider the space Σ of continuous real functions
f : [0, n+ 1] → R which are C2 in x ∈ (0, n+ 1)∖ {x1, . . . , xn}, have bounded left
and right first x-derivative at x1, . . . , xn, and vanish at 0 and n+ 1. Let Σ̃ be the
space of real functions

ψ : [0, n+ 1]× R → R, (x, t) 7→ ψ(x, t)

which are C2 in t and are such that, for each t, x 7→ ψ(x, t) belongs to Σ.
Then, following a standard approach (see e.g. [25, Appendix III to Ch. II]), we

define as (real) solution of equations (2.2)–(2.3), or of Sβ,γ,µ, any function ψ ∈ Σ̃
which satisfies, for all t ∈ R, the equation

(2.4) π2ψtt(x, t)− ψxx(x, t) + 2βπ2ψt(x, t)− 2γψtxx(x, t) = 0 ∀x ∈ (0, n+ 1)∖ {x1, . . . , xn}

and the jump conditions

(2.5) 2µπ2ψtt(xj , t)− (ψx + 2γψtx)(x
+
j , t) + (ψx + 2γψtx)(x

−
j , t) = 0 ∀j = 1, . . . , n.
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Here ψx(x
±
j , t), ψtx(x

±
j , t) stand for limx→x±

j
ψt(x, t), limx→x±

j
ψtx(x, t). By a com-

plex solution we refer to a complex function whose real and imaginary parts are real
solutions. (The jump of the x derivatives at each point xj is computed integrating
(2.2) in (xj − ϵ, xj + ϵ) and taking the limit ϵ→ 0).

For µ = 0, the jump conditions (2.5) imply the smoothness of ψ and (2.4) re-
duces to the wave equation (2.2) without Dirac deltas, which describes the damped
(undamped, if β = γ = 0) unloaded string Sβ,γ,0. We may, thus, include in this
formulation the case of the unloaded strings of length n+ 1 with any n ⩾ 1.

2.3. The point spectrum. For this type of systems, eigenvalues can be found
via separation of variables (or, equivalently, via matrix pencils [13]). Specifically,
a complex number λ is an eigenvalue if there exist a nonzero complex solution ψ
of the form

ψ(x, t) = f(x)eλt;

we will call f the eigenfunction and the family of solutions cψ, with c ∈ C∖{0}, the
(damped) normal mode with eigenvalue λ. The point spectrum Spβ,γ,µ of Sβ,γ,µ is
the set of all its eigenvalues. Obviously, the nonreal eigenvalues come in conjugate
pairs.

Explicitly, from (2.3), (2.4) and (2.5), λ is an eigenvalue of Sβ,γ,µ with eigen-
function f if and only if f ∈ Σ, f ̸= 0 and

(1 + 2γλ)f ′′(x) = π2(λ2 + 2βλ)f(x) ∀x ∈ (0, n+ 1)∖ {x1, . . . , xn},(2.6a)

(1 + 2γλ)(f ′(x+j )− f ′(x−j )) = 2µπ2λ2f(xj) ∀j = 1, . . . , n,(2.6b)
f(0) = f(n+ 1) = 0.(2.6c)

Note that, for each β ⩾ 0 and γ ⩾ 0, Spβ,γ,0 is the spectrum of the unloaded
(damped or undamped) string Sβ,γ,0, and that for each µ > 0, Sp0,0,µ is the spec-
trum of the undamped Rayleigh loaded string.

3. The spectra of the damped unloaded strings

3.1. The spectral map. We now review the spectra of the damped unloaded
strings with the three types of dissipation that we consider. As already mentioned
in the Introduction, all this is elementary and essentially known, and can also be
viewed as particular cases of general situations discussed e.g. in [3,9,13,14,17,23,
26]. However, our approach is finalized to the subsequent treatment of the damped
loaded string.

For all β ⩾ 0, define the functions

ξβ,0 : C → C, ξβ,0(λ) := π
√
λ2 + 2βλ,

and, for γ > 0,

ξβ,γ : C∖ {− 1
2γ } → C, ξβ,γ(λ) := π

√
λ2 + 2βλ√
1 + 2γλ

.

Here and in the following
√
· denotes the real square root for real nonnegative

arguments and (e.g. the choice of the branch is immaterial) the complex square
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root with nonnegative imaginary part for all other, real or complex, arguments.
We make the tacit convention that, if γ = 0, then {− 1

2γ } is the empty set and use
the symbol ξβ,γ for both γ = 0 and γ > 0. We will see below that 0, −2β and
− 1

2γ are not eigenvalues, so in the rest of this section we tacitly exclude them from
consideration.

It is well known that the spectrum of the damped unloaded string Sβ,γ,0 is
related to that of the elastic string S0,0,0 by a simple relation: for any β ⩾ 0 and
γ ⩾ 0, λ ∈ Spβ,γ,0 if and only if 1

π ξβ,γ(λ) ∈ Sp0,0,0 and λ ̸= −2β,− 1
2γ This is

due to the fact that, as an abstract equation, when m = 0 equation (2.1) has the
structure Aψ̈ + Bψ̇ + Cψ = 0 with linear operators A, B and C such that B is a
linear combination of the other two (see e.g. [16, Section 7.5]). In fact, it is a simple
check (integrate (2.2) with µ = 0 in [0, n+ 1] and impose the boundary conditions
(2.3)) that a complex number λ belongs to Spβ,γ,0 if and only if it is different from
−2β and from − 1

2γ and satisfies sinh
(
(n+ 1)ξβ,γ(λ)

)
= 0 and belongs to Sp0,0,0 if

and only if sinh((n+ 1)πλ) = 0.
We define

ωk :=
k

n+ 1
, k ∈ N,

so that Sp0,0,0 = {±iωk : k ∈ Z+} and λ ∈ C ∖ {−2β,− 1
2γ } is in Spβ,γ,0 if and

only if ξβ,γ(λ) = iπωk for some k ∈ Z+. Solving these equations gives Spβ,γ,0 =

{λβ,γ± (ωk) ∈ C∖ {− 1
2γ ,−2β} : k ∈ Z+} with the two functions

(3.1) λβ,γ± : R+ → C, λβ,γ± (ω) = −(β + γω2)±
√
(β + γω2)2 − ω2,

that we will call spectral map.
Note that the labeling of the eigenvalues is such that

(3.2) ξβ,γ(λ
β,γ
± (ωk)) = iπωk ∀β, γ, k

(the absence of the double sign at the left hand side is due to our convention on
the square root).

3.2. The spectral locus. In view of the study of the damped loaded string
we introduce, for each β ⩾ 0 and γ ⩾ 0, the spectral locus Lβ,γ ⊂ C of Spβ,γ,0 as

Lβ,γ := Lβ,γ,+ ∪ Lβ,γ,−

with
Lβ,γ,+ := λβ,γ+ (R+), Lβ,γ,− := λβ,γ− (R+),

so that Spβ,γ,0 ⊂ Lβ,γ for all n ⩾ 1. It is not difficult to check that:
1. If β ⩾ 0, then Lβ,0 = (−2β, 0) ∪ {λ ∈ C : Re(λ) = −β}.
2. If γ > 0, then L0,γ = (−∞,− 1

2γ ) ∪ C0,γ .
3. If β, γ > 0, then there are three cases:

3.1. 4βγ < 1 (underdamped case): Lβ,γ =
(
−∞,− 1

2γ

)
∪ (−2β, 0)∪Cβ,γ .

3.2. 4βγ = 1 (critical case): Lβ,γ = (−∞, 0).
3.3. 4βγ > 1 (overdamped case): Lβ,γ = (−∞,−2β) ∪

(
− 1

2γ , 0
)
.
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Figure 1. The spectral loci (in the non-critical case). The marks
± and the colors denote the subsets Lβ,γ,+ (blue) and Lβ,γ,− (red)
and the arrows denote the orientation on them, which is that of ω
increasing in the parametrization of these sets by the func-
tions λβ,γ± .

Here Cβ,γ is the circle of center − 1
2γ and radius

√
1−4βγ
2γ . The spectral loci are

shown in Figure 1. In the case of a Kelvin–Voigt viscoelastic string without external
damping (β = 0, γ > 0), the circle C0,γ is tangent to the imaginary axis at 0. In
case 3.1., the point −2β lies inside the circle Cβ,γ . We will not consider the critical
case in the sequel.

It is also not difficult to show that, the critical case excluded, both functions
λβ,γ± : R+ → Lβ,γ,± are injective and, therefore, induce an orientation on the sets
Lβ,γ,±, according to increasing values of the parameter ω. These two subsets and
their orientation are shown in Figure 1, and will be used later. We note also
that Lβ,γ,+ and Lβ,γ,− have empty intersection except, in cases 1., 2. and 3.3, at
ω = 1

2γ (1 ±
√
1− 4βγ), which are the points of intersection between the negative

real semi-axis and either the circle Cβ,γ or the line Re(λ) = −β. These are the only
values of ω for which λβ,γ± are not smooth, but only continuous.

Remark 3.1. In the critical case, λβ,γ± are not injective because λβ,γ+ (ω) = −2β

for all ω ⩾ 2β and λβ,γ− (ω) = −2β for all ω ⩽ 2β. As a consequence, in this case the
spectral locus contains the point −2β = − 1

2γ (which is not in the point spectrum).
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3.3. The unloaded spectra. We now quickly describe the structure of the
spectra Spβ,γ,0, considering first the two limit cases γ = 0 and β = 0.

1. The spectrum Spβ,0,0, of the string with viscous damping, β > 0 and γ = 0,
is completely elementary. The eigenvalues are the λβ,0± (ωk) = −β ±

√
β2 − ω2

k,
k ∈ Z+. A finite number (zero, if β < 1

n+1 ) of them belong to the real interval
(−2β, 0) and all other to the line Re(λ) = −β. See Figure 5.a (which uses a notation
that will be introduced later).

We add that, for each k, as β grows the two eigenvalues λβ,0± (ωk) move along
the circle of radius ωk centered at zero, from ±iωk to the point −β, where they
meet and then move on the real axis one to the right and one to the left of −β.

2. The Kelvin–Voigt spectrum Sp0,γ,0, with γ > 0, is very well known, see
e.g. [17,23]. The eigenvalues are λ0,γ± (ωk) = −γω2

k ±
√
γ2ω4

k − ω2
k, k ∈ Z+.

Those with k < n+1
γ , if present, form a finite number of pairs of non-real

complex conjugate numbers which belong to the circle C0,γ . The remaining ones
belong to the interval (−∞,− 1

2γ ) and accumulate to its boundaries. The λ0,γ± (ωk)

are all pairwise distinct except, if n+1
γ ∈ Z+, λ0,γ,0n+1

γ ,± = − 1
γ .

The Kelvin–Voigt spectrum is illustrated in Figure 2.
Here too, as γ grows, the eigenvalues move on circles centered at zero until

they reach the real axis at the point of intersection with the circle C0,γ .
3. For β > 0 and γ > 0 there are two cases.
In the underdamped case 4βγ < 1 the spectrum is similar to that of the Kelvin–

Voigt system, but slightly more complex: there are infinitely many eigenvalues in
the interval (−∞,− 1

2γ ) which accumulate to its boundaries, a possibly zero finite
number of eigenvalues in the interval (−2β, 0), and a possibly zero finite number of
conjugate pairs of eigenvalues in the circle Cβ,γ . ([18, Lemma 1.7] treats this case,
but with different boundary conditions, with β = cγ for some c > 0 and with an
additional term cψ in the equation, and this changes the radius of the circle Cβ,γ).

In the overdamped case, with 4βγ > 1, there are infinitely many eigenvalues in
the interval (−∞,−2β) which accumulate to −∞ and infinitely many eigenvalues
in the interval (− 1

2γ , 0) which accumulate to − 1
2γ .

See Figures 6a and 6c.

Remark 3.2. Since its eigenvalues depend continuously on γ ⩾ 0, the spectrum
Sp0,γ,0 of the Kelvin–Voigt string is a continuous deformation of the spectrum
Sp0,0,0 of the elastic string. However, the continuity at γ = 0 is not geometrically
evident if these spectra are plotted in the complex plane, because, at infinity, the
imaginary axis is “very far” from the real one. This is one of the reasons why we
will later prefer regarding the spectrum Spβ,γ,µ of the damped loaded string as a
deformation of the spectrum Spβ,γ,0 of the damped unloaded strings, rather than
of the spectrum Sp0,0,µ of the undamped loaded string. Another reason is that the
spectral locus Lβ,γ does not change with µ. We note, however, that the continuity
of the Kelvin–Voigt spectrum at γ = 0 becomes geometrically evident if the spectra
are plotted on the Riemann sphere, see Figure 2. Similarly, when β > 0, the relation
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Re( )

Im( )

-
1

2 γ

Figure 2. The point spectra of the Kelvin–Voigt string (red
points) and of the elastic string (blue points) in the complex plane
(top) and in the complex plane and on the Riemann sphere (bot-
tom). The red, black and blue lines are, respectively, the circle
C0,γ , the real axis and the imaginary axis in the complex plane and
their preimages on the Riemann sphere (In both figures, n = 3,
γ = 0.24).

between Spβ,γ,0 for small γ and Spβ,0,0 could be geometrically understood plotting
the spectra on the Riemann sphere.

3.4. Notation for the bands. For β, γ ⩾ 0, the eigenfunction of the string
Sβ,γ,0 relative to an eigenvalue λ is

(3.3) fβ,γ,0λ (x) = sinh(ξβ,γ(λ)x), x ∈ [0, n+ 1]

(integrate (2.6a) with µ = 0 and use the boundary condition (2.6c)). Thus, the two
eigenvalues of each pair λβ,γ± (ωk) have the same eigenfunction.

Moreover, identities (3.2) imply that the eigenfunctions are independent of β
and γ, in the sense that the eigenfunction of Spβ,γ,0 relative to the pair of eigen-
values λβ,γ± (ωk) equals the eigenfunction of Sp0,0 relative to the pair of eigenvalues
λ0,0± (ωk) = ±iωk, namely sin(πωkx).

Consequently, the eigenfunctions relative to the eigenvalues λβ,γ± (ω(n+1)ℓ) have
nodes at the points x1, . . . , xn. We will see below—and it is well known at least for
β = γ = 0 [22]—that these eigenvalues also belong to Spβ,γ,µ for all µ > 0, and
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that they organize its band structure. For this reason, we will call them the string
eigenvalues of Spβ,γ,0 and of Spβ,γ,µ, and we will denote them

λβ,γℓ,0,± := λβ,γ± (ωℓ,0), ℓ ∈ Z+.

In particular, λ0,0ℓ,0,± = ±iωℓ,0.
To facilitate, later, the description of the band structure of Spβ,γ,µ we relabel

the frequencies of the elastic string as

ωℓ,q := ω(n+1)ℓ+q, ℓ ∈ N, q = 0, . . . , n.

Here, properly, ω0,0 is not defined; however, in order to simplify the notation, we
make the convention ω0,0 = 0.

4. The point spectra of the damped loaded strings

4.1. The spectral map. The key fact for our analysis is that between the
spectra of the damped and undamped loaded strings there is the same relation as
in the unloaded case, namely, the spectral map (3.1). This, together with some
consequences and other properties, is the content of the following Proposition:

Proposition 4.1. For all n ⩾ 1, β ⩾ 0, γ ⩾ 0 and µ ⩾ 0:
i. 0, −2β and, if γ > 0, − 1

2γ do not belong to Spβ,γ,µ.
ii. If λ ∈ Spβ,γ,µ then Re(λ) = 0 if β = γ = 0 and Re(λ) < 0 otherwise.
iii. λ ∈ C ∖ {0,−2β,− 1

γ } belongs to Spβ,γ,µ if and only if 1
π ξβ,γ(λ) belongs

to Sp0,0,µ, that is, if and only if λ = λβ,γ± (ω) for some ω > 0 such that
±iω ∈ Sp0,0,µ.

iv. Spβ,γ,µ ⊂ Lβ,γ .

Proof. (i.) It follows from (2.6) that if λ is such that λ = 0, λ2 + 2βλ = 0 or
1 + 2βλ = 0 then f = 0.

(ii.) Define the total energy at time t of a complex solution ψ as

Et(ψ) :=
1

2

n∑
j=0

∫ xj+1

xj

(
|ψt(x, t)|2 +

1

π2
|ψx(x, t)|2

)
dx+ µ

n∑
j=1

|ψt(xj , t)|2.

For any solution ψ, using (2.4), the vanishing of ψt at x = 0, n+1 and an integration
by parts of all terms containing ψxψ̄tx, ψxψ̄txx and of their complex conjugates
which arise in the computation, gives d

dtEt(ψ) = −∆(ψ) with

∆(ψ) :=

n∑
j=0

∫ xj+1

xj

(2γ
π2

|ψtx(x, t)|2 + 2β|ψt(x, t)|2
)
dx.

For a damped normal mode ψλ(x, t) = eλtf(x),

∆(ψλ) = |λeλt|2
n∑

j=0

∫ xj+1

xj

(2γ
π2

|f ′(x)|2 + 2β|f(x, t)|2
)
dx > 0
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if at least one among β and γ is positive. But, clearly, Et(ψλ) = e2tRe(λ)E0(ψλ)
and thus d

dtEt(ψλ) = 2Re(λ)Et(ψλ). This implies 2Re(λ)Et(ψλ) = −∆(ψλ) < 0
and proves the statement because Et(ψ) > 0 if the solution ψ is nonzero.

(iii.) f satisfies (2.6) with some β, γ > 0 and λ ̸= 0,−2β,− 1
2γ if and only if

it satisfies them with λ replaced by 1
π ξβ,γ(λ) and β and γ replaced by 0. By ii.,

the eigenvalues of Sp0,0,µ are purely imaginary. Solving the equation ξβ,γ(λ) = iπω

with iω ∈ Sp0,0,µ gives λ = λβ,γ± (ω).
(iv.) For each ω ∈ R+, λβ,γ± (ω) ∈ Lβ,γ . □

Remark 4.1. When m = 0, namely, for the unloaded string, item ii. could
also be deduced with an algebraic argument from (2.6a) (see [16, Theorem 7.1]).

4.2. Review of Sp0,0,µ. Item iii. of Proposition 4.1 allows to deduce the
spectrum Spβ,γ,µ of the damped loaded string from that of the undamped loaded
string Sp0,0,µ, which is known: a complex number λ ̸= 0 belongs to Sp0,0,µ if and
only if it satisfies

(4.1) sinh(πλ)Un(µπλ sinh(πλ) + cosh
(
πλ)) = 0

(see [7,22] for n = 1 and [20] for an equivalent formulation valid for any n, where,
however, there are no detailed proofs).

Here the Uk, k ∈ N, are the Chebyshev polynomials of the second kind, which
are the complex polynomials defined by the recurrence

(4.2) U0(x) := 1, U1(x) := 2x, Uk(x) := 2xUk−1(x)− Uk−2(x) (k ⩾ 2, x ∈ C)

(see e.g. [19]). Each Uk : C → C is a polynomial of degree k and has the k simple
zeroes

(4.3) ck,p := cos
( pπ

k + 1

)
, p = 1, . . . , k.

The appearance of the Chebyshev polynomials in the eigenvalue equations is typical
of locally periodic systems [7].

The zeroes of the first factor in (4.1) are the “string” eigenvalues ±iωℓ,0 = ±iℓ,
ℓ ∈ Z+, of the elastic string, whose eigenfunctions have nodes at the positions of
the point masses.

Since the zeroes of Un are the n numbers cn,p, p = 1, . . . , n, the zeroes of the
second factor in (4.1) are the solutions of the n equations

(4.4) µπλ sinh(πλ) + cosh(πλ) = cn,p, p = 1, . . . , n,

and thus come in groups of n. Their properties are well known and are recalled in
the following Proposition (of which we provide for completeness a proof, because
we could not find a detailed one in the literature).

Proposition 4.2. For any n ⩾ 1 and µ > 0, Sp0,0,µ consists of the string
eigenvalues ±iωℓ,0, ℓ ∈ Z+, and, for each ℓ ∈ N, of n pairs of other eigenvalues
±iωµ

ℓ,q, q = 1, . . . , n, with

(4.5) ωℓ,0 < ωµ
ℓ,1 < · · · < ωµ

ℓ,n < ωℓ+1,0.
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Each ωµ
ℓ,q is a smooth decreasing function of µ which tends to ωℓ,q for µ → 0 and

to ωℓ,0 for µ→ +∞.

ω1,0 ω2,0 ω3,0 ω4,0 ω5,0

ω

0 ω1,0 ω2,0 ω3,0 ω4,0

ω0

μ

(a) (b)

Figure 3. The spectrum Sp0,0,µ of the undamped Rayleigh string,
for n = 3. (a) The frequencies ωµ

ℓ,p are the abscissas of the inter-
section points between the graphs of the function at the l.h.s. of
equation (4.6) (solid curve) and of the n = 3 functions at its r.h.s.
(dashed curves; p = 1 red, p = 2 blue, p = 3 green), reordered as
in (4.5); the black points denote the string frequencies. (b) The
frequencies as functions of µ; the vertical black lines denote the
string frequencies; the other lines denote the frequencies ωµ

ℓ,q, with
the coloring as in (a). (In (a) µ = 0.1, in (b) µ ∈ (0, 3)).

Proof. Fix µ > 0. The non-string eigenvalues of Sp0,0,µ are the solutions ±iω
with non-integer positive ω of the n equations (4.4). Written for ω ∈ R+ ∖ Z+,
these equations are

(4.6) µπω sin(πω) = cos(πω)− cn,p, p = 1, . . . , n,

or else

(4.7) F (ω) = fp(ω), p = 1, . . . , n,

with
F (ω) := πµω, fp(ω) =

cos(πω)− cn,p
sin(πω)

.

Since |cn,p| < 1, f ′p(ω) = π
cn,p cos(πω)−1

sin(πω)2 < 0, fp is strictly decreasing in each
interval (ℓ, ℓ + 1), ℓ ∈ N, which it maps diffeomorphically onto R. Together with
the fact that, for µ > 0, R+ ∋ ω 7→ F (µ, ω) is strictly increasing and onto R+, this
ensures that each equation (4.6) or (4.7) has exactly one positive solution ω̃ℓ,p(µ)
in each such interval. Solutions with different p are (at the same µ) obviously
different. A look at Figure 3.a, which plots the two functions at the two sides of
(4.6), shows that at fixed µ, the ω̃ℓ,p(µ) increase (decrease) with p if ℓ is even (odd).
We thus relabel them as

ωµ
ℓ,q := ω̃ℓ,q if ℓ is even, ωµ

ℓ,q := ω̃ℓ,n−q+1 if ℓ is odd

so as to get the ordering (4.5).
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Consider now the µ-dependence of the ωµ
ℓ,q. An inspection of Figure 3.a shows

that they are decreasing functions of µ and that each of them tends to ωℓ,0 as
µ → +∞ and (after the relabeling) to ωℓ,q for µ → 0 (the solid curve becomes
steeper if µ increases and flatter if µ decreases). Their smoothness follows from the
implicit function theorem, given that ∂

∂ω (F (µ, ω)− fp(ω)) = πµ− f ′p(ω) > 0 for all
µ ⩾ 0 and ω /∈ Z+. □

Thus, the undamped Rayleigh spectrum Sp0,0,µ is a global, smooth µ-defor-
mation of the spectrum Sp0,0,0 of the elastic string. As µ increases, the string
frequencies ωℓ,0 remain fixed while the other frequencies ωµ

ℓ,q move to their left
towards the immediately lower ωℓ,0 (towards zero, if ℓ = 0), forming bands which,
for each µ, become narrower with ℓ. See Figure 3b.

It is also possible to give a quantitative, asymptotic estimate on the size ωµ
ℓ,n−

ωℓ,0 of the bands. From Figure 3a it is clear that, if g(ω) := πµω sin(πω), then
for sufficiently large µ and ℓ 1 ≈ |g(ωµ

ℓ,n) − g(ωℓ,0)| ≈ |g′(ωℓ,0)||ωµ
ℓ,n − ωℓ,0| =

π2µℓ|ωµ
ℓ,n − ωℓ,0|. Thus, for large µ and ℓ, the size of the bands decrease as 1

µℓ .

Remark 4.2. (i) The fact that, in absence of damping, the frequencies decrease
when µ grows is in agreement with a general theorem by Rayleigh on the dependence
of the frequencies of mechanical systems on the rigidity [1, 22]. On this regard,
we mention that in [12] the band structure is qualitatively deduced from such a
theorem and a limit argument; clearly, this type of argument does not apply in the
presence of viscoelastic damping.

(ii) It follows from (4.1) and Proposition 4.2 that, for any n ⩾ 1, β ⩾ 0, γ ⩾ 0
and µ > 0, a complex number λ belongs to Spβ,γ,µ if and only if λ ̸= 0, λ ̸= −2β,
λ ̸= − 1

2γ (if γ > 0) and

(4.8) sinh(ξβ,γ(λ))Un(µξβ,γ(λ) sinh(ξβ,γ(λ)) + cosh(ξβ,γ(λ))) = 0.

We give a direct proof of this equation, and of its particular case (4.1), within
the proof of Proposition 5.1 on the eigenfunctions, because some of its details are
needed to compute the eigenfunctions.

4.3. The point spectra of the damped Rayleigh strings. At this point,
the structure of the spectra of the damped Rayleigh strings should be clear. Re-
call that the intervals and arcs of the spectral locus are oriented according to ω
increasing.

Proposition 4.3. Consider any β ⩾ 0 and γ ⩾ 0 such that 4βγ ̸= 1.
i. For any µ > 0, Spβ,γ,µ consists of the string eigenvalues λβ,γℓ,0,±, ℓ ∈ Z+,

and of the eigenvalues λβ,γ± (ωµ
ℓ,1), . . . , λ

β,γ
± (ωµ

ℓ,n), ℓ ∈ N.
ii. As µ grows, each λβ,γ± (ωµ

ℓ,p), p ̸= 0, moves continuously and monotonically
along Lβ,γ,±, in the direction opposed to that induced by ω increasing, and
satisfies

lim
µ→0

λβ,γ± (ωµ
ℓ,p) = λβ,γ± (ωℓ,p), lim

µ→+∞
λβ,γ± (ωµ

ℓ,p) = λβ,γℓ,0,±.
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Figure 4. (a) The point spectrum Spβ,0,0, β > 0, of the elastic
string with viscous damping and (b) the point spectrum Spβ,0,µ of
the Rayleigh string with viscous damping, µ > 0. For comparison,
the eigenvalues of the elastic string without damping are shown in
(a) by the ticks on the imaginary axis. In this and the next figures
the thicker dots are the string eigenvalues and the thinner ones are
the other eigenvalues. The string eigenvalues are labeled in (a).
Only the upper complex halfplane is shown. (Values used: n = 3,
β = 1.05 and, in (b), µ = 0.15).
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Figure 5. The spectra Sp0,γ,0 of the unloaded (a) and Sp0,γ,µ (b)
of the loaded viscoelastic string. The string eigenvalues (thicker
dots) are labeled in (a). Note the narrowing of the bands and the
passage of some eigenvalues from (−∞,− 1

2γ ) to C0,γ as µ grows.
(Numerical values: n = 3, γ = 0.22 and, in (b), µ = 0.1).

Proof. (i.) This follows from item iii. of Proposition 4.1 and from the de-
scription of Sp0,0,µ in Proposition 4.2.

(ii.) Since the ωµ
ℓ,q are continuous functions of µ ⩾ 0, the λβ,γ± (ωµ

ℓ,q) depend
continuously on β ⩾ 0, γ ⩾ 0 and µ ⩾ 0. As µ grows, for fixed β ⩾ 0 and γ ⩾ 0,
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Figure 6. The spectrum of the viscoelastic string with viscous
damping in the underdamped (a) and overdamped (c) cases com-
pared to the spectrum of the Rayleigh string with the same damp-
ing (b,c). (Used values: n = 3; (a) β = 0.5, γ = 0.3, µ = 0;
(b) β = 0.5, γ = 0.3, µ = 0.21; (c) β = 0.7, γ = 0.5, µ = 0;
(d) β = 0.5, γ = 0.3, µ = 0.6).

the string eigenvalues remain fixed and the other eigenvalues move continuously on
the spectral locus Lβ,γ . Since each ωµ

ℓ,q is a decreasing function of µ and belongs
to the interval (ωℓ,0, ωℓ,q), see (4.5), each λβ,γ± (ωµ

ℓ,q) moves monotonically between
λβ,γℓ,0,± and λβ,γ± (ωℓ,q). The limit behaviours follow from those of the ωµ

ℓ,q. □

Globally, Spβ,γ,µ is a continuous deformation of Spβ,γ,0 in which, for each ℓ ∈ N,
each eigenvalue λβ,γ± (ωµ

ℓ,q) is closer to the string eigenvalue λβ,γℓ,0,± than λβ,γ± (ωℓ,q).
Therefore, bands of n + 1 eigenvalues are present, which, as in the undamped
case, are separated by the string eigenvalues, but are narrower than those of the
undamped case. They become narrower as ℓ and µ grow (because of those of
Sp0,0,µ do so).

The resulting structure is illustrated in Figures 4, 5 and 6 for the three cases of
the Kelvin–Voigt dissipation, viscous dissipation, and the combination of the two.

5. The eigenfunctions

We conclude this study by providing expressions for the eigenfunctions. To our
knowledge, these expressions are new even in the case γ = 0: the best we could
find in the literature are numerical investigation of the eigenfunctions [12,21].
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Preliminarily note that, in view of (4.3), the zeroes of the factor Un in the
eigenvalue equation (4.8), namely the non-string eigenvalues, are the zeroes of the
n equations

(5.1) µπλ sinh(ξβ,γ(λ)) + cosh
(
ξβ,γ(λ)

)
= cn,p, p = 1, . . . , n.

By the multiplicity of an eigenvalue we mean the number of damped normal modes
with that eigenvalue and linearly independent eigenfunctions.

Proposition 5.1. Consider any n ⩾ 1, β ⩾ 0, γ ⩾ 0 and µ > 0 and assume
4βγ ̸= 1. Then:

i. All eigenvalues in Spβ,γ,µ have multiplicity 1.
ii. The eigenfunction relative to a string eigenvalue λ is as in (3.3).
iii. The eigenfunction f of an eigenvalue λ which is solution of the p-th equa-

tion (4.4) satisfies, for all x ∈ [xj−1, xj ], j = 1, . . . , n+ 1,

(5.2) f(x) = Uj−1(cn,p) sinh(ξβ,γ(λ)(x−xj−1))−Uj−2(cn,p) sinh(ξβ,γ(λ)(x−xj)).

Proof. Since we need some informations on the eigenfunctions which can be
obtained within a proof of the characteristic equation (4.8), we begin giving such a
proof (using the standard “transfer matrix” method [7]). Consider a normal mode
ψλ(x, t) = f(x)eλt. The eigenfunction f ∈ Σ satisfies (2.6a), (2.6b) and (2.6c).
Define fj := f |[xj−1,xj ] : [xj−1, xj ] → C, j = 1, . . . , n+ 1 and

ξ := ξβ,γ(λ), c := cosh(ξ), s := sinh(ξ).

By (2.6a), each fj satisfies

f ′′j (x) = ξ2fj(x), x ∈ (xj−1, xj),

and thus

(5.3) fj(x) = aj cosh((x− xj−1)ξ) + bj sinh((x− xj−1)ξ) ∀x ∈ [xj−1, xj ]

with aj := fj(xj−1) and bj := 1
ξ f

′
j(x

+
j−1). Thus, fj(xj) = caj + sbj and f ′j(x

−
j ) =

ξ(saj + cbj). By the continuity of f , fj+1(xj) = fj(xj), namely

(5.4) aj+1 = caj + sbj , j = 1, . . . , n,

and (2.6b) gives

(5.5) bj+1 = 2µξaj+1 − (saj + cbj), j = 1, . . . , n.

The last two sets of equations can be written as(
aj+1

bj+1

)
=M

(
aj
bj

)
, j = 1, . . . , n,

with the 2× 2 (“transfer”) matrix

M :=

(
c s

s+ 2µξc c+ 2µξs

)
and thus

(5.6)
(
aj+1

bj+1

)
=M j

(
a1
b1

)
, j = 1, . . . , n.
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The boundary conditions (2.6c) give

a1 = 0, can+1 + sbn+1.

Since a1 = 0, necessarily b1 = 1
ξ f

′(0+) ̸= 0 (otherwise all aj , bj = 0 and ψλ = 0).
Given that the eigenfunction is defined up to a factor we may assume b1 = 1. The
vanishing of can+1 + sbn+1 implies

c(Mn)12 + s(Mn)22 = 0,

which is,thus, a necessary condition for λ to belong to the spectrum. The follow-
ing standard argument [2, 7] shows that this condition is exactly the eigenvalue
equation (4.8).

First, note that M has determinant one. Thus, by the Cayley–Hamilton theo-
rem and the recursion (4.2), its powers are given by

(5.7) M j = Uj−1(y)M − Uj−2(y)I, j ∈ N,

where y := 1
2 Tr(M) = c+ µξs and I is the 2× 2 unit matrix (see [7]). Therefore,

c(Mn)12+ s(M
n)22 = (cM12+ sM22)Un−1(y)− sUn−2(y) = 2(cs+µξs2)Un−1(y)−

sUn−2(y) = s
(
2yUn−1(y) − Un−2(y)

)
= sUn(y), where the last equality follows

again from (4.2). This proves that every eigenvalue is a zero of sUn(y), that is,
satisfies (4.8).

Conversely, it is easy to prove that any λ ∈ C which is ̸= 0,−2b,− 1
2γ and which

satisfies sUn(y) = 0 belongs to Spβ,γ,µ.

Remark 5.1. The unimodularity of the transfer matrix is usually related to
time reversal and energy conservation [7]. In our case, energy is not conserved, but
the dissipation does not act on the system at fixed t, hence on the eigenfunctions f .

We may now prove Proposition 5.1. We keep using the notation introduced so
far in this proof.

(i.) This follows from ii. and iii.
(ii.) For a string eigenvalue, s = 0. Hence c2 = 1 and a trivial induction

gives sinh(ξxj) = 0, cosh(ξxj) = cj for all j = 1, . . . , n + 1. Conditions (5.4)
and (5.5) give all aj = 0 and bj = cj−1b1. The choice b1 = 1 leads to f1(x) =
sinh(ξ(x − x0)) = sinh(ξx) ∀x ∈ [0, n + 1] and, for each j = 1, . . . , n + 1, fj(x) =
bj(sinh(ξx) cosh(ξxj−1) − cosh(ξx) sinh(ξxj−1)) = c2(j−1) sinh(ξx) = sinh(ξx) for
all x ∈ [xj−1, xj ]. Thus, f(x) = sinh(ξx) for all x ∈ [0, n+ 1].

(iii.) A non-string eigenvalue λ ∈ Spβ,γ,µ is a solution of the p-th equation
(5.1) for some p = 1, . . . , n. In such a case, 1

2Tr(M) = c + µξs = cn,p and (5.6),
(5.7) and a1 = 0 give(
aj+1

bj+1

)
=

(
cUj−1(cn,p)− Uj−2(cn,p) sUj−1(cn,p)
(s+ 2µξc)Uj−1(cn,p) (c+ 2µξs)Uj−1(cn,p)− Uj−2(cn,p)

)(
0
b1

)
.

This implies that there is a one-parameter choice of the aj ’s and bj ’s, parametrized
by b1, and thus a unique eigenfunction relative to λ. Choosing b1 = 1 and observing
that, since c+2µξs = 2cn,p−c, (c+2µξs)Uj−1(cn,p)−Uj−2(cn,p) = 2cn,pUj−1(cn,p)−
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Uj−2(cn,p)− cUj−1(cn,p) = Uj(cn,p)− cUj−1(cn,p) (see (4.2)), we conclude that

aj+1 = sUj−1(cn,p), bj+1 = Uj(cn,p)− cUj−1(cn,p), j = 0, . . . , n.

Therefore, from (5.3), f1(x) = sinh(ξx) and, for j = 1, . . . , n,

fj+1(x) = sUj−1(cn,p) cosh(ξx− ξxj) + (Uj(cn,p)− cUj−1(cn,p)) sinh(ξx− ξxj)

= Uj−1(cn,p)(s cosh(ξx− ξxj)− c sinh(ξx− ξxj)) + Uj(cn,p) sinh(ξx− ξxj)

= −Uj−1(cn,p) sinh(ξx− ξxj+1) + Uj(cn,p) sinh
(
ξx− ξxj)

where the last equality follows from the fact that

s = sinh(ξx1) and c = cosh(ξx1). □

n=1, ℓ=0, p=1 n=1, ℓ=1, p=1 n=1, ℓ=2, p=1 n=2, ℓ=0, p=1 n=2, ℓ=0, p=2

n=3, ℓ=0, p=1 n=3, ℓ=0, p=2 n=3, ℓ=0, p=3 n=4, ℓ=0, p=3 n=4, ℓ=2, p=4

Figure 7. The eigenfunctions of the (damped or undamped)
Rayleigh’s system relative to a few eigenvalues λβ,γ± (ωµ

ℓ,p). The
string profile is the graph of the function −if , with f as in (5.2)
and normalized to 1. Note the discontinuities in the first derivative
of the string profile. In all pictures, µ = 0.15.

We note very quickly some properties of the eigenfunctions, omitting for short-
ness the simple checks. First, as it happens for the Kelvin–Voigt and elastic strings
(see Section 3.4), for β ⩾ 0, γ ⩾ 0, ℓ ∈ Z+ and p = 1, . . . , n, the eigenfunction
relative to the pair of eigenvalues λβ,γ,µℓ,p,± equals that relative to λ0,0,µℓ,p,±.

Second, if λ is a non-string eigenvalue in Spβ,γ,µ, which is the solution of the
p-th equation (5.1), p = 1, . . . , n, then its eigenfunction f satisfies the reflectional
symmetry

f(xn+1−j − y) = (−1)p+1f(xj + y) ∀y ∈ [0, 1), j = 0, . . . , ⌊n
2 ⌋

and is such that f1(x1) ̸= 0 and, for all j = 1, . . . , n:

(5.8)
f(xj)

f(x1)
= Uj−1(cn,p).
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Identities (5.8) indicate that, during the oscillations, the relative displacements
from the equilibrium configuration of the point masses (determined by the real
parts of f(x1), . . . , f(xn)) are independent of the band (namely, of the index ℓ).

Lastly, using the fact that the Rayleigh’s eigenvalues tend to those of the
Kelvin–Voigt string for µ → 0, it is not difficult to verify that so do, pointwisely,
the eigenfunctions. Thus, for small µ, the eigenfunctions are small deformations of
those of the Kelvin–Voigt string, but with discontinuities in the first derivative of
the string’s profile function at the point masses. Figure 7 depicts a sample of these
eigenfunctions, computed with the formulas of Proposition 5.1.

Remark 5.2. Since ξβ,γ(λ
β,γ
+ (ωµ

ℓ,p)) = ξβ,γ(λ
β,γ
− (ωµ

ℓ,p)) for all ℓ and p, the two
eigenvalues ξβ,γ(λ

β,γ
± (ωµ

ℓ,p)) have the same eigenfunction. This explains why the
eigenvalue − 1

2γ , when present, has multiplicity one even though it can be seen as
the coalesce of a pair of such eigenvalues.
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ТАЧКАСТИ СПЕКТРИ И НОРМАЛНИ МОДОВИ РЕJЛИJЕВЕ
ОПТЕРЕЋЕНЕ СТРУНЕ СА ПРИГУШЕЊЕМ

Резиме. Описуjемо тачкасте спектре дисипативне верзиjе чувене “Реjлиjеве
оптерећене струне”, еластичне струне коначне дужине коjа носи n ⩾ 1 jедна-
ко размакнутих, jеднаких тачкастих маса, што jе основни модел коjи показуjе
тракасту структуру и поjављуjе се у многим примењеним областима. Разма-
трамо случаj у коме jе дисипациjа последица вискозног пригушења услед ме-
ђудеjства струна-окружење, стандардни модел за унутрашњу вискоеластичну
дисипациjу (Келвин-Фоjтов модел), као и њихову комбинациjу. Показуjемо да
jе тачкасти спектар сваке од ових пригушених верзиjа Реjлиjеве оптерећене
струне непрекидна деформациjа тачкастог спектра неоптерећених еластичних
струна са тим пригушењем и коjа представља тракасту структуру сличну оноj
у непригушеном случаjу. Такође даjемо експлицитне аналитичке изразе за соп-
ствене функциjе, за било коjу вредност n.
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