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FIRST STEPS TOWARDS THE
AVERAGING WITH RESPECT TO
A PART OF THE COORDINATES

Ivan Polekhin

Abstract. The problem of averaging on an infinite time interval is consid-
ered. The classical results on averaging proved by N.N. Bogoluybov are gen-
eralized to the case in which only a part of the coordinates in the phase space
remains close to the equilibrium position of the averaged system. We call this
the averaging with respect to a part of the coordinates. The results are based
on some topological ideas combined with the standard theorem on averaging
on a finite time interval.

1. Introduction

The classical averaging theory consists of two main results proved by N. N. Bo-
golyubov [1]: the theorem on averaging over a finite time interval and the theorem
on averaging over an infinite time interval. Let us briefly recall the main results of
these theorems.

Let us have a system of ordinary differential equations

(1.1) ẋ = v(x) + w(x, kt),

where x ∈ Rn, t ∈ R, k ∈ R, k > 0; v : Rn → Rn and w : Rn × R → Rn are smooth
functions, the function w is (2π/k)-periodic in t.

We additionally assume that the time average of the function w equals zero

1

2π

∫ 2π

0

w(x, t) dt = 0.

If k is a positive large number, then the function w is rapidly oscillating and
its average value equals zero. In the papers of N.N. Bogolyubov the above system
is presented in the so-called standard form

dx

dτ
= x′ = ε(v(x) + w(x, τ)),
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where ε = 1/k is the small parameter and τ = t/ε. However, we will not use this
form in our considerations.

System (1.1) is the original system and

(1.2) ẋ = v(x)

is the averaged one.
Let us now present the main theorem of the classical theory of averaging de-

veloped by N.N. Bogolyubov. This result contains sufficient conditions for the
closeness of solutions of systems (1.1) and (1.2) on a finite time interval.

Theorem 1.1. Let x0 be an initial condition, t0 be an initial time, and [t0, t0+
T ] be a finite time interval. Let us assume that the solution x(t; t0, x0) is defined
on [t0, t0 + T ]. Then for any ε > 0 there exists K, such that for any k > K for all
t ∈ [t0, t0 + T ] the following inequality holds

∥xaveraged(t; t0, x0)− x(t; t0, x0)∥ < ε.

Here xaveraged(t; t0, x0) is the solution of the averaged system, x(t; t0, x0) is the
solution of the original system; xaveraged(t0; t0, x0) = x(t0; t0, x0) = x0.

The second basic result is the theorem on averaging on an infinite time interval.
We present this theorem for the case in which the right hand side is periodic.

Theorem 1.2. Let x = 0 be a non-degenerate equilibrium of the averaged
system: v(0) = 0 and

det
∂v

∂x
(0) ̸= 0.

For any ε > 0 there exists K such that for any k > K there exists a point x0 and
for all t

∥x(t; t0, x0)∥ < ε.

Moreover, the solution x(t; t0, x0) is (2π/k)-periodic.

In other words, for k sufficiently large there exists a solution of the original
system which is arbitrarily close to the equilibrium solution of the averaged solution.

In our paper, we are going to present sufficient conditions for the existence of
a solution of the original system such that only a part of the coordinates in the
phase space remains close to the equilibrium. In some sense, this is analogues to the
stability with respect to a part of the variables developed by V.V. Rumyantsev [2,3].

2. Main result

Let us now have the following system

(2.1) ẋ = vx(x) + wx(x, y, kt), ẏ = vy(y) + wy(x, y, kt).

Here x ∈ Rnx , y ∈ Rny , k ∈ R, vx : Rnx → Rnx , vy : Rny → Rny , wx : Rnx × Rny ×
R → Rnx , wy : Rnx×Rny×R → Rny . The functions wx and wy are 2π-periodic with
respect to the last variable: wx(x, y, kt + 2π) = wx(x, y, kt), wx(x, y, kt + 2π) =
wx(x, y, kt) for all x, y, t. All functions here and below are assumed to be C∞-
smooth.
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Let the set Wx be defined by some function Fx : Rnx → R:

Wx = {x ∈ Rnx : Fx(x) ⩽ 0}.
Everywhere below we assume that Wx is a connected set and that on its boundary
∂Wx, defined by the equation Fx(x) = 0, the condition dFx ̸= 0 is satisfied, i.e. the
boundary ∂Wx is a smooth submanifold of Rnx of codimension one.

Definition 2.1. We say that x ∈ ∂Wx is an egress point with respect to the
system ẋ = vx(x) if dFx(vx) > 0 at x. The set of all egress points is denoted by
W+
x ⊂ ∂Wx.

Definition 2.2. We say that the solution of ẋ = v(x) enters Wx at x ∈ ∂Wx

if dFx(vx) < 0 at x. The set of all such points is denoted by W−
x ⊂ ∂Wx.

Definition 2.3. We say that the vector field vx(x) is externally tangent to
∂Wx at x if dFx(vx(x)) = 0 and additionally

nx∑
i,j=1

( ∂F 2
x

∂xi∂xj
vixv

j
x +

∂Fx
∂xi

∂vix
∂xj

vjx

)
> 0.

The set of all points in which the vector field vx(x) is externally tangent to ∂Wx

will be denoted by W 0+
x .

Remark 2.1. Similar definitions hold for the system ẏ = vy(y). In this case,
we denote the corresponding sets by Wy, W−

y , W+
y , and W 0+

y .

Remark 2.2. As an example of the above three types of points one can consider
the system on the plane

ẋ1 = x1,

ẋ2 = −x2.

The set Wx is the unit circle defined by the inequality Fx(x) = x21 + x22 − 1 ⩽ 0.
The points of the boundary x21 + x22 − 1 = 0 for which x21 > x22 are the egress
points; if x21 < x22 then the trajectories of solutions enter Wx; if x21 = x22 then
the trajectory is externally tangent to the boundary ∂Wx at these four points. A
schematic representation of the vector field of this system is shown in Figure 1.

The following statement is essentially the main result of the paper.

Theorem 2.1. Let us have two compact sets Wx ⊂ Rnx and Wy ⊂ Rny such
that ∂Wy = W−

y , ∂Wx = W+
x ∪W−

x ∪W 0+
x and W+

x has at least two connected
components. Then there exists (x0, y0) ⊂ Rnx × Rny such that the trajectory of
solution of (2.1) starting at (x0, y0) remains in Wx ×Wy for all t ⩾ 0, provided
that k is large.

Proof. The general idea of the proof can be outlined as follows. First, we will
consider a modification of the system (2.1) and proof the statement for this system.
Then we will show that for large k the obtained solution cannot reach the subset
of Rnx ×Rny in which we modify our system. Therefore, this solution exists in the
original system, provided that k is large.
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Let us consider the following system, which will be called the modified system.

ẋ = vx(x) + σx(x)wx(x, y, kt),

ẏ = vy(y) + σy(y)wy(x, y, kt).
(2.2)

Here, σx : Rnx → R, σy : Rny → R. These functions are defined as follows. Let
σ : R → R be the constant function (which equals unity) minus a standard bell-
shaped function:

σ(r) =

{
1− e

(r/δ)2

(r/δ)2−1 , if − δ ⩽ r ⩽ δ,

1, if |r| > δ.

Therefore, σ equals unity outside the δ-neighborhood of zero. Here δ > 0 is a
parameter.

Let Oδ(∂Wx) be the δ-neighborhood of the boundary ∂Wx. Oδ(∂Wx) is a
tabular neighborhood of ∂Wx provided that δ > 0 is small (below we assume that
this property holds).

Finally, we define σx(x) as a composition

σx(x) = σ(dist(x, ∂Wx)),

where dist(x, ∂Wx) is the usual Euclidean distance between the point x and the
boundary. Similarly, σy(y) = σ(dist(y, ∂Wy)).

Let us show that for any fixed δ > 0, k > 0 there exists a point (x0, y0) ∈
Rnx × Rny such that the solution of the modified system (2.2) starting at (x0, y0)
never leaves Wx ×Wy.

We will prove by contradiction. For the brevity of notations we will de-
note the pair (x, y) by z. Therefore, by zmod(t) = zmod(t; t0, z0) we will denote
the solution (xmod(t; t0, x0), ymod(t; t0, y0)) of (2.2) satisfying the initial condition
zmod(t0; t0, z0) = z0 (in other words, we have (xmod(t0; t0, x0), ymod(t0; t0, y0)) =
(x0, y0)).

Let τ : Wx ×Wy → R ∪ {+∞} be the following function:

τ(z0) = sup{t′ ⩾ 0: zmod(t; t0, z0) ⊂ (Wx ∖ ∂Wx)× (Wy ∖ ∂Wy) for all t ∈ [0, t′)}.

In other words, τ(z0) defines the time required to reach the boundary of the set
Wx ×Wy for the solution starting at z0. For instance, for any z0 ∈ int(Wx ×Wy)
we have τ(z0) > 0. For all z0 ∈ ∂(Wx ×Wy) we put τ(z0) = 0.

Let us consider a curve Γ: [0, 1] → Wx × Wy satisfying the following prop-
erties. Let Γx(s) and Γy(s) be the functions which define Γ: Γx : [0, 1] → Wx

and Γy : [0, 1] → Wy. Therefore, Γ(s) = (Γx(s),Γy(s)). Let Γx(s) defines an ar-
bitrary path without self-intersections such that Γx(0) ∈ W+

x , Γx(1) ∈ W+
x , and

Γx(s) ∈ int(Wx) for all s ∈ (0, 1); Γy(s) = y0 ∈ int(Wy), where y0 is an arbitrary
interior point in Wy and Γx(0), Γx(1) belong to two different connected components
of W+

x .
It is not hard to prove that the map τ is continuous. This follows from the

assumption that ∂Wx =W+
x ∪W−

x ∪W 0+
x , i.e. the vector field vx is either transversal

to ∂Wx or externally tangent to the boundary (see Figure 1).



FIRST STEPS TOWARDS THE AVERAGING 119

For any point z0 = (x0, y0) ∈ Γ we assume that τ(z0) <∞. Therefore, for the
initial point point z0 ∈ Γ we have some point zmod(τ(z0); 0, z0) ∈ ∂(Wx×Wy) which
belongs to the boundary of the considered set. Moreover, xmod(τ(z0); 0, z0) ∈ W+

x

(here we use that ∂Wy = W−
y ). Since the function zmod(t; t0, z0) is continuous in

all variables, then the map

z0 7→ zmod(τ(z0); 0, z0)

is also continuous as a composition of two continuous functions. We will denote this
map by Σ: Γ → ∂(Wx×Wy). Let C be the connected component of W+

x such that
Γx(0) ∈ C. Let us define the following projection Pr: W+

x ×Wy → {Γx(0),Γx(1)}:

Pr(x, y) =

{
(Γx(0), y0), if x ∈ C,

(Γx(1), y0), if x ∈W+
x ∖ C.

This map is also continuous. Finally, the map Pr(Σ): Γ → {Γx(0),Γx(1)} is con-
tinuous. We have constructed a continuous map from Γ to its boundary. Therefore,
our assumption that τ(z0) <∞ for all z0 ∈ Γ cannot be true and we have at least
one z0 ∈ Γ such that τ(z0) = +∞. In other words, the corresponding trajectory
never leaves Wx ×Wy.

Figure 1. A schematic representation of the dynamics in Wx.
The dynamics in Wy is trivial in the sense that the y-component
of the solutions cannot leave Wy.

Now, we will show that for δ > 0 sufficiently small and k > 0 sufficiently large,
the above solution also exists in the original system.

Let us consider the averaged system

(2.3) ẋ = vx(x), ẏ = vy(y).

By zaveraged(t) = zaveraged(t; t0, z0) we will denote the solution (xaveraged(t; t0, x0),
yaveraged(t; t0, y0)) of (2.3) satisfying the initial condition zaveraged(t0; t0, z0) = z0
(in other words, we have (xaveraged(t0; t0, x0), yaveraged(t0; t0, y0)) = (x0, y0)).
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Let x0 ∈ ∂Wx and y0 ∈ Wy. We will consider three cases. First, if x0 ∈ W+
x ,

y0 ∈ Wy, then for any t0 ∈ [0, 2π] there exists ∆t ∈ [0, 1] such that dist(Wx ×
Wy, zaveraged(t0+∆t; t0, z0)) > 0 (actually, it holds for all sufficiently small ∆t > 0).

Indeed, the Taylor expansion of xaveraged(t0 + t; t0, z0) has the following form

xaveraged(t0 + t; t0, z0) = x0 + vx(x0)t+O(t2).

Therefore,
d

dt

∣∣∣
t=0

Fx(xaveraged(t0 + t; t0, z0)) = Fx(x0) + dFx(vx(x0))t+O(t2)

= dFx(vx(x0))t+O(t2) > 0

for all sufficiently small t > 0.
From the continuous dependence on the initial conditions, we obtain that for

any t0 ∈ [0, 2π] and any x0 ∈ W+
x , y0 ∈ Wy there exist two positive numbers

ρ = ρ(z0, t0) > 0, d = ρ(z0, t0) > 0 such that for any initial conditions t̂0, ẑ0
satisfying

∥z0 − ẑ0∥2 + |t0 − t̂0|2 < ρ2

we have
dist(zaveraged(t̂0 +∆t; t̂0, ẑ0),Wx ×Wy) > d

for some ∆t = ∆t(z0, t0) ∈ [0, 1]. Here and below the norm ∥z0 − ẑ0∥ is the usual
Euclidean distance in Rnx × Rny .

Similarly, we obtain ρ = ρ(z0, t0) > 0, d = ρ(z0, t0) > 0 with the same prop-
erties for any t0 ∈ [0, 2π] and any x0 ∈ W 0+

x , y0 ∈ Wy. In this case, we have to
consider the Taylor expantion of the solutions up to the terms of the second order
in time:

d

dt

∣∣∣
t=0

Fx(xaveraged(t0 + t; t0, z0)) = Fx(x0) + dFx(vx(x0))t

+
1

2

nx∑
i,j=1

( ∂F 2
x

∂xi∂xj
vix(x0)v

j
x(x0) +

∂Fx
∂xi

∂vix
∂xj

vjx(x0)
)
t2 +O(t3) > 0

If x0 ∈ W 0+
x , y0 ∈ Wy, then we again have d and ρ, yet the corresponding

solutions leave Wx ×Wy in the reversed time:

dist(zaveraged(t̂0 −∆t; t̂0, ẑ0), ∂(Wx ×Wy)) > d

for some ∆t ∈ [0, 1].
Similarly, for any t0 ∈ [0, 2π] and any x0 ∈ Wx, y0 ∈ W− = ∂Wy we have

ρ = ρ(z0, t0) > 0, d = ρ(z0, t0) > 0 such that for any initial conditions t̂0, ẑ0
satisfying

∥z0 − ẑ0∥2 + |t0 − t̂0|2 < ρ2

we have
dist(zaveraged(t̂0 −∆t; t̂0, ẑ0),Wx ×Wy) > d

for some ∆t ∈ [0, 1].
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Therefore, for any point in the direct product ∂(Wx ×Wy) × [0, 2π] ⊂ Rnx ×
Rny × R we have an open ball B(z0, t0) of radius ρ(z0, t0). Let us consider a finite
covering of ∂(Wx×Wy)× [0, 2π] by {Bi}Ni=1. Here Bi = B(z0, t0) for some (z0, t0) ∈
∂(Wx × Wy) × [0, 2π]. For any Bi = B(z0, t0) we also have the corresponding
di = d(z0, t0).

Let δ > 0 be such a number that Oδ(∂(Wx ×Wy)) × [0, 2π] ⊂
⋃N
i=1Bi. From

the theorem on averaging on a finite time interval there exists K > 0 such that for
any k > K and any (z0, t0) ∈

⋃N
i=1Bi we have

dist(zaveraged(t0 + t; t0, z0), zmod(t0 + t; t0, z0)) < D/2,

for all t ∈ [−1, 1]. Here
D = min

1⩽i⩽N
di.

Therefore, if zmod(t) ∈ Wx × Wy, then zmod(t) is also a solution of the original
system. □

Corollary 2.1. Let us assume that for any ε > 0 there are two compact sets
Wx ⊂ Rnx , Wx ⊂ Oε(0) and Wy ⊂ Rny such that ∂Wy =W−

y , ∂Wx =W+
x ∪W−

x ∪
W 0+
x and W+

x has at least two connected components. Then, for any ε > 0 there
exists z0 = (x0, y0) ⊂ Rnx × Rny such that for the solution (x(t; 0, z0), y(t; 0, z0))
of (2.1) starting at (x0, y0) it holds that x(t; 0, z0) ∈ Oε(0) for all t ⩾ 0, provided
that k is large.

3. Mechanical example

As an example, let us consider a planar inverted pendulum and a point moving
along a horizontal circle. We assume that the pendulum and the massive point
interact and the magnitude of the interaction force is a rapidly oscillating function
of time. To be more precise, let l be the length of the rigid rod of the pendulum.
Let Oxyz be an inertial coordinate system. By xpend, ypend, zpend we denote the
corresponding coordinates of the point mass of the pendulum located at the end of
the rod.

xpend = 0, ypend = l sinφ, zpend = l cosφ.

Here φ is the angle between the rod and the vertical direction Oz. Let us also have
a horizontal circle of radius r centered at the origin. Let ψ be a local coordinate
on this circle. The coordinates xpoint, ypoint, zpoint of the point mass on this circle
can be written as usual:

xpoint = r cosψ, ypoint = r sinψ, zpoint = 0.

In addition, we assume that the magnitude of the force of interaction has the form
F (φ,ψ) sin kt and the point mass on a circle is subject to a force of viscous friction.

The Lagrange equations have the following form

mpendl
2φ̈ = mpendlg sinφ+Qφ(φ,ψ) sin kt,

mpointr
2ψ̈ = −µψ̇ +Qψ(φ,ψ) sin kt.
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Figure 2. An inverted planar pendulum and a point mass moving
along a horizontal circle.

Here µ > 0 is the coefficient of viscous friction; Qφ(φ,ψ) and Qψ(φ,ψ) can be
obtained explicitly as functions of F (φ,ψ). The averaged system has the following
form

ẋ1 = x2, ẋ2 =
g

l
sinx1, ẏ1 = y2, ẏ2 = − µ

mpointr2
y2.

Here x1 = φ and y1 = ψ. Let

Fx = x21 + x22 − δ2.

Since the upper equilibrium of the pendulum is a saddle point, then Fx defines Wx

such that ∂Wx = W+
x ∪W−

x ∪W 0+
x . Let Fy = y22 − 1. Formally, the set where

Fy ⩾ 0 is not compact in R2. Yet, y1 is an angular variable, so this set is S1×[−1, 1]
and compact. From the theorem we have that for any δ > 0 there exists a solution
of the original system such that for this solution φ2(t) + φ̇2(t) < δ for all t ⩾ 0,
provided that k is large.

Let us note that the above holds even if we add some additional force acting
on the point mass on the circle. Namely, let the second equation in the original
system has the form

mpointr
2ψ̈ = −µψ̇ +Qψ(φ,ψ) sin kt+ f(φ,ψ).

In the averaged system we obtain the following equation

ẏ2 = − µ

mpointr2
y2 +

f(y1)

mpointr2
.

The function f(y1) is bounded. Therefore, for Fy = y22 − a2 we have
d

dt
Fy = 2y2ẏ2 = 2

(
− µ

mpointr2
y22 +

f(y1)

mpointr2
y2

)
< 0,

provided that y2 = ±a, a > 0 is sufficiently large. Finally, the theorem can be
applied for Fx = x21 + x22 − δ2 and Fy = y22 − a2. Moreover, it can be shown that
this result also holds for f = f(x1, y1).
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4. Conclusion

The results presented in this paper are a continuation of a series of papers in
which classical results of the Bogolyubov averaging method are proved using topo-
logical methods [4–8]. More precisely, the general scheme of reasoning is as follows:

(1) Instead of the original system, a modified system is considered.
(2) For it, using fixed point theorems or other topological theorems, the ex-

istence of a solution with the required properties is proved.
(3) Using the finite time averaging theorem, we show that the obtained solu-

tion cannot reach the region in which we modify the original system.
This approach, firstly, clarifies the geometry of the averaging method. In partic-
ular, it explains the difference between the averaging in the periodic and almost
periodic cases [9]. Secondly, it allows us to generalize classical results to the case
of degenerate (in the sense of linear theory) equilibrium positions. To be more
precise, it has been shown that the applicability of the theorem on averaging on
an infinite time interval does not depend on the properties of the linear part of
the averaged system at the equilibrium, but on some qualitative properties of the
averaged vector field. In particular, the systems ẋ1 = x1, ẋ2 = −x2 and ẋ1 = x31,
ẋ2 = −x32 are identical from this point of view.

In this paper, we use the topological Ważewski method [10–12], which allows
us to prove the existence of solutions that do not leave the considered regions of the
extended phase space. Unlike fixed point theorems (which are not applicable to the
problem under consideration), the use of the Ważewski method does not require
the periodicity of the right hand side (in our case, the function wx is periodic in
time, but we cannot guarantee that the function y(t) will also be periodic in time).

Note that the Ważewski method has been previously used to prove the ex-
istence of non-falling solutions for an inverted pendulum on a moving base (the
Whitney pendulum) [13], as well as to prove the existence of non-falling solutions
for the Kapitza–Whitney pendulum [5]. One of the most important areas of further
research is the search for interesting mechanical problems to which the developed
averaging method could be applied.
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ПРВИ КОРАЦИ КА УСРЕДЊАВАЊУ
У ОДНОСУ НА ДЕО КООРДИНАТА

Резиме. Разматра се проблем усредњавања на бесконачном временском ин-
тервалу. Класични резултати о усредњавању коjе jе доказао Н. Н. Богољубов
су уопштени на случаj у коме само део координата у фазном простору остаjе
близу равнотежног положаjа усредњеног система. Ово називамо усредњава-
њем у односу на део координата. Резултати су засновани на неким тополошким
идеjама комбинованим са стандардном теоремом о усредњавању на коначном
временском интервалу.
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