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GENERALIZED COMPLETELY
INTEGRABLE SYSTEMS

Velery V. Kozlov

Abstract. Dynamical systems more general than Hamiltonian systems are
considered. The role of the Hamiltonian function is played by a 1-form (not
necessarily closed) on a symplectic phase space. A bracket of such forms is
introduced and a generalized Liouville theorem on the complete integrability
is formulated. This generalization allows us to better understand the meaning
of the conditions of the classical theorem on the complete integrability of the
Hamilton equations and to reveal the role of tensor invariants.

1.

The modern point of view on Hamiltonian dynamical systems is formulated by
E. Cartan [1] (a detailed exposition can be found in the book [2]; notations from
this book will be used below).

Let (M2n,Ω) be a symplectic manifold and Ω be a closed nondegenerate 2-form
on M2n (symplectic structure). The smooth function H : M2n → R generates a
Hamiltonian vector field as follows

(1.1) ivΩ = −dH.

The field v itself defines a Hamiltonian system of differential equations on M :

(1.2) ẋ = v(x), x ∈ M.

Let F,G : M2n → R be two smooth functions; According to formula (1.1), they
correspond to the Hamiltonian vector fields u,w. The Lie derivative LuG is called
the Poisson bracket of these functions. It is easy to check that LuG = −LvF . In
other words, {F,G} = −{G,F}.

The famous Liouville theorem states that if n independent first integrals of a
Hamiltonian system (1.2), with pairwise zero Poisson brackets, are known, then
this system of differential equations is integrable by quadratures. A discussion of
various aspects of this theorem (both analytic and geometric) can be found, for
example, in [2–4].

The integrability by quadratures is only related to local consideration. There-
fore, Liouville’s theorem is transferred to the more general case where the equation
(1.1) is replaced by the following relation:

(1.3) ivΩ = φ,

where φ is a closed (but not necessarily exact) 1-form. In this case, one can define
the ‘Poisson bracket’ of closed 1-forms and formulate Liouville’s theorem on the
integrability by quadratures in a more general form [2]. Geometric aspects of
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integrable dynamical systems of the form (1.3) with condition dφ = 0 are discussed
in [5]. For other generalizations of integrable systems, see, e.g., [6–10].

2.

Let us consider the most general case when the vector field v is defined by
a given 1-form φ (not necessarily closed). Since the 2-form Ω is assumed to be
nondegenerate, there is a natural isomorphism v 7→ ivΩ of the space T (M) (tangent
vector fields on M) and the space Λ1(M) (1-form on M). Therefore, without
additional assumptions, the vector field v of (1.3) defines an arbitrary dynamical
system on a symplectic manifold.

Having in mind a generalization of integrable Hamiltonian systems, we assume
that there are n 1-forms φ1, . . . , φn linearly independent at each point of the man-
ifold M2n. They define n independent vector fields v1, . . . , vn such that

(2.1) ivkΩ = −φk, q ⩽ k ⩽ n.

There’s a simple

Proposition 2.1. ivkφj = −ivjφk for all 1 ⩽ j, k ⩽ n.

Indeed, according to (2.1),

ivkφj = ivk ivjΩ = −ivj ivkΩ = −ivjφk.

What is the meaning of the expression ivkφj? Let φj be closed 1-forms, that
is, locally φj = dfj . Then

(2.2) ivkφj = ivkdfj = Lvkfj = {fk, fj},

where dfk = φk.
With this remark in mind, it is useful to introduce the n-dimensional distribu-

tion of tangent planes

(2.3) Πn = {φ1 = · · · = φn = 0}

and assume that for all 1 ⩽ j, k ⩽ n.

(2.4) ivkφj = 0.

This means that at each point x ∈ M2n the linearly independent vectors
v1(x), . . . , vn(x) lie in the n-dimensional tangent plane Πn

x .
According to (2.2), for usual Hamiltonian systems the condition (2.4) means

that all pairwise Poisson brackets of the functions f1, . . . , fn are zero, which will be
the first integrals of the original Hamiltonian system (1.1)–(1.2). In the considered
general case, condition (2.4) does not have such a meaningful sense yet.

3.

Let’s introduce a bracket of two 1-forms:

[φk, φj ] = Lvkφj − Lvjφk; 1 ⩽ k, j ⩽ n.

This bracket is also defined for a degenerate 2-form Ω. More precisely, the bracket
is defined in the subspace Λ1(M), which is the image of the space T (M) under the
mapping v 7→ ivΩ.

Proposition 3.1.

(3.1) [φk, φj ] = i[vk,vj ]Ω+ d(ivk ivj )Ω.

Corollary 3.1. [φk, φj ] = −[φj , φk].
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Proposition 3.1 is proved using the well-known formula [Lu, iw] = i[u,w] (see,
e.g., [2], Chapter IV, Section 3.4). Indeed, Lvkφj = Lvk ivjΩ = ivjLvkΩ+i[vk,vj ]Ω =
ivjdφk + i[vk,vj ]Ω = Lvjφk − divjφk + i[vk,vj ]Ω = Lvj

φk + i[vk,vj ]Ω+ d(ivk ivjΩ).

Remark. In [2], the following Poisson bracket of two 1-forms is introduced

(3.2) (φk, φj) = i[vk,vj ]Ω

(according to the natural isomorphism of the spaces T (M) and Λ1(M)). Unfortu-
nately, the formula (3.2) does not reveal the meaning of this operation. Our way of
introducing the bracket is closely related to tensor invariants of dynamical systems.

As an example, we turn again to Hamiltonian systems and put φk = dfk. Then,
as it is easy to calculate,

(3.3) [dfk, dfj ] = −2d{fk, fj}.
Therefore, if the functions f1, . . . , fn are in pairwise involution, then their dif-

ferentials commute. In particular, the well-known fact follows from (3.1) and (3.3):
if the functions are in involution, then their corresponding Hamiltonian vector fields
commute. Here, the expression ivk ivjΩ in (3.1) equals zero since the functions fk
and fj are in involution.

4.

At this point, we can formulate a general theorem on integrable dynamical
systems on a symplectic phase space (M2n,Ω).

Theorem 4.1. Suppose that there are n independent 1-forms φ1, . . . , φn such
that for all 1 ⩽ i, j ⩽ n

(1) φi(vj) = 0,
(2) [φi, φj ] = 0.

Then the distribution (2.3) is integrable and if its n-dimensional integral manifolds
are found, then each of the systems of differential equations

(4.1) ẋ = vi(x), x ∈ M2n

is integrable by quadratures.
Further, if the vector fields v1, . . . , vn are complete on M2n, then

3. integral manifolds of distribution Π are diffeomorphic to Ts×Rn−s (Ts is
an s-dimensional torus),

4. on these invariant manifolds, we can choose s angular and n − s linear
coordinates such that these variables change uniformly along the solutions
of each of the systems of differential equations (4.1).

Indeed, from the first assumption, at each point x ∈ M2n, the vectors
v1(x), . . . , vn(x) belong to the n-dimensional tangent planes Πn

x at each point x ∈
M2n. In particular, iviivjΩ = 0 and therefore the last summand in (3.1) equals
zero. From the second assumption (taking into account the nondegeneracy of Ω)
follows the commuting of the vector fields v1, . . . , vn. But then the distribution Π
is integrable: through each point x ∈ M2n passes the only n-dimensional integral
manifold of this distribution. If these manifolds are found, then the integrability of
each of the systems (4.1) follows from the Lie theorem applied to commuting vector
fields v1, . . . , vn which are tangent to the integrable manifolds. Conclusions 3 and 4
on the structure of integral manifolds and on the phase flows on them follow from
well-known results on the free action of the group Rn on n-dimensional smooth
manifolds (see, e.g., [4]).

Theorem 4.1, of course, contains as a special case the classical Liouville theorem
on the complete integrability of Hamiltonian systems (together with its geometric
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aspect). Instead of the integrals f1, . . . , fn we should consider their differentials
df1, . . . , dfn. The integral manifolds of the integrable distribution Π are already
known: they are manifolds of joint levels of functions f1, . . . , fn. The only condition
of Liouville’s theorem—the equality to zero of the Poisson brackets of the first
integrals—is here split into two conditions: the first condition fixes the integral
manifolds of distribution Π, and the second condition guarantees the commutability
of the corresponding Hamiltonian vector fields.

We typically consider the case of compact integral manifolds; then s = n. In
the general case integral manifolds of distribution Π are more complicated. In
particular, they can densely fill M2n.

5.

Let the conditions of Theorem 1 be satisfied. Is it then possible to find explicitly
(e.g., using quadratures) the integral manifolds of the distribution Π? It turns out
that even in the simplest case, when n = 1, the answer to this question is negative.

Indeed, let v = (v1(x), v2(x)) be an arbitrary vector field in the plane R2 with
the standard symplectic structure Ω = dx1 ∧ dx2 (area 2-form). This field can, of
course, be represented as (1.3). The first condition of Theorem 1 is automatically
satisfied since

φ(v) = iv(ivΩ) = 0.

Since n = 1, the second condition is also satisfied. The integral manifolds of the
distribution (2.3) are the phase curves of the vector field v on the plane R2. Finding
them is equivalent to the explicit integration of the system of differential equations
in the plane, which is, of course, impossible in the general case.

Let us now assume that the 1-form φ is an invariant of the system

(5.1) ẋ1 = v1(x1, x2), ẋ2 = v2(x1, x2)

in the plane R2:

(5.2) 0 = Lvφ = ivdφ+ d(ivφ) = ivdφ.

Let us suppose that at some point in the phase plane, dφ ̸= 0. Then this inequality
holds in a neighborhood of that point. Consequently, according to (5.2) we have
v = 0 in this neighborhood. If dφ = 0 in some region of the phase plane, then
φ = df , where f is a smooth function. Since in this case

ivΩ = df,

then the system (5.1) is Hamiltonian with the Hamiltonian function −f . In partic-
ular, f is a first integral of the system. If v ̸= 0, then obviously df ̸= 0 and hence
f in a non-constant function. We obtain the integrability by quadratures of the
system (5.1).

Therefore, if Lvφ = 0 (that is, the 1-form φ is a conservation law), then the
equations (5.1) are integrable by quadrature. This simple fact is in agreement with
general observations about integrability of systems of differential equations with a
sufficient number of independent tensor invariants [11].

6.

The observations of the previous section can be generalized. Let the 1-forms
φ1, . . . , φn once again satisfy the conditions

(6.1) ivkφj = φj(vk) = 0

and, in addition,

(6.2) ivkdφj = 0, 1 ⩽ k, j ⩽ n.
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Then these forms will be invariants of each of the systems of differential equations
(4.1) since

(6.3) Lvkφj = ivkdφj + d(ivkφj) = 0.

For ordinary fully integrable Hamiltonian systems, condition (6.2) is obviously sat-
isfied (since the 1-form φj is closed). Moreover, the 1-forms φj satisfying the two
conditions (6.1) and (6.2) are called integral forms by Cartan; they give rise to
absolute integral invariants of dynamical systems (4.1).

From (6.3) it follows that the pairwise brackets of the 1-forms φ1, . . . , φn are
zero. In particular, the vector fields v1, . . . , vn are pairwise commutative (Propo-
sition 2). Hence, the assumptions of the theorem in Proposition 4 are satisfied.
Therefore, in this case the dynamical systems (4.1) can also be considered as com-
pletely integrable in the generalized sense.

It is worth noting that here each of the systems of differential equations (4.1)
in the 2n-dimensional phase space M2n admits 2n independent tensor invariants:
vector fields v1, . . . , vn (among them the field vi is a trivial invariant) and the forms
φ1, . . . , φn. According to [11], the systems (4.1) can be integrable by quadratures.
However, is this really the case? As shown in Section 5, for n = 1 this is obviously
not the case.

Let us discuss the question of integrability by quadratures of the dynamical
system (4.1) satisfying the relations (2.1) if the conditions (6.1) and (6.2) are sat-
isfied. Let the rank of the closed 2-form dφj in some region M2n be constant and
equal to ρ (this means that (dφj)

ρ ̸= 0, and (dφj)
ρ+1 = 0). Then by Darboux’s

theorem, in some local coordinates p1, . . . , pn, q1, . . . , qn on M2n

(6.4) dφj =

ρ∑
i=1

dpi ∧ dqi.

From the condition (6.2) it follows that the first ρ components of each of the
vector fields v1, . . . , vn in p and q coordinates are zero. From (6.4) we obtain the
following local equation

(6.5) φj =

ρ∑
i=1

pi ∧ dqi + dS(p, q),

where S is a smooth function. The first 1-form on the right-hand side of (6.5)
equals zero on vectors v1, . . . , vn. But then, according to (6.1), the function S will
be the first integral of each of the n systems of differential equations (4.1).

Thus, the problem of integration by quadratures for the dynamical system (4.1)
reduces to the question of an efficient (using quadratures) reduction of the 2-forms
dφ1, . . . , dφn to the ‘canonical’ form (6.4). However, known proofs of Darboux’s
theorem demonstrate that this is hardly possible. Although, if the closed 2-form
dφj is already reduced to the form (6.4), then the function S in (6.5) can be found
by simple quadratures.
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УОПШТЕНИ ПОТПУНО ИНТЕГРАБИЛНИ СИСТЕМИ

Резиме. Разматраjу се динамички системи општиjи од Хамилтонових систе-
ма на симплектичком фазном простору. Улогу Хамилтонове функциjе игра 1-
форма (не нужно затворена). Уводи се комутатор таквих форми и формулише
се уопштена Лиувилова теорема о потпуноj интеграбилности. Ово уопштење
нам омогућава да боље разумемо значење услова класичне теореме о потпуноj
интеграбилности Хамилтонових jедначина као и да истакнемо улогу тензор-
ских инвариjанти.
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