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THE INFLUENCE OF FLIGHT CONTROLS ON AIRCRAFT’S
EQUATIONS OF MOTION
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When designing a new aircraft with known requirements of its purpose
and desired characteristics, it is strongly recomended to desingn its configura-
tion as precisely as possible in the early design stage, and as part of that —
the aircraft’s control surfaces geometry and weight distribution.

The above mentioned problem especially arises concerning modern fighter
plane with an active lift and sideforce controls, i.e. flaperons and canards.

To meet the requirements of stability-and-control investigations in this
design stage, it is very important to possess an appropriate mathematical model
of an aircraft which would permit to take the aircraft’s configuration fully into
consideration. For that sake equations of motion are derived from quasicoordi-
nates and quasivelocities using Boltzmann-Hamel equations for the mechanical
systems with holonomic constraints in body fixed refereence frame (Fp). We
assume the aircraft as a rigid body with six degrees of freedom: longitudinal,
lateral and vertical center of gravity (CG) displacement and rolling, pitching

Fig. 1
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and yawing. The forces acting on the aircraft are: aerodynamic, gravity, inertial
and engine thrust forces. There are taken into consideration relative motions
of the following control surfaces: 1) vertical canard, 2) horizontal canard,
3) leading edge, 4) spoilers, 5) inboard flaperons, 6) outboard flaperons,
7) elevator or all moving tail, 8) rudder, 9) aerodynamic brakes. The controls
with an asterisk can be deflected also differentialy (one up and the other one
down) depending on the maneuver encountered. In the model there is assumed
that hinge axes of the controls have a dihedral and that they are swept, as
can be seen on Fig. 1. It is also assumed that in filight control system the
staiffens is linear and that there exists viscous damping, which is introduced
by using Rayleigh’s dissipation function.

There are four coordinate systems of interest in the study of a rigid
body motions of aerodunamic vehicles (Fig. 2.): 1) earth fixed Fp or inertia
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F, reference frame Gxpypzp (which are equivalent when ,.flat-earth‘c assump-
tion holds), 2) vehicle carried vertical frame F, (Cx,y,z,) with axes parallel
to Fp, where the origin is at the aircraft’s CG, 3) air trajectory reference fame
F, (Cxyywzy) with the origin at CG and x,, axis directed along aircraft’s
velocity vector relative to the atmosphere, 4) body fixed reference frame Cxyz.

The aircraft’s position in any moment is defined (see Fig. 2.) with:

a) the position of its CG due to Fy by vector r(xg, yg, Sg),
b) aircraft’s Euler angles: Y-yawing, ®-pitching, ®-rolling.

Vector of the aircraft’s instantaneous translational velocity ¥V, in Fy is:

— —=

V,=Ui+Vj+ Wk,
and angular velocity EIA is expreseed as:

Q,=Pi+Qj+Rk,
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where kinematical relations between quasivelocities U, ¥, W and P, Q, R and
generalized velocities .\:E, }E z:E and ®, O, V¥, are respectively:

(1) cal[U, V, W]=L,cal[Xg, Yg, Z),

Q@) cal [P, Q, R]=Lq cal[®, 0, V],

where matrices L, and Lo are given in (1).

It is obvious that U, V, W, P, Q, R are quasivelocities, since their inte-
grabs in time domain, i.e. quasicoordinates Ty, Ty, Ty, Tp, T, TR do not
define aircraft’s position explicitly.

Equations of motion are derived, as has already been mentioned, from
quasicoordinates and quasivelocities using Boltzmann-Hamel equations for the
systems with holonomic constraints. According to (2) they can be written as
follows:

d joT*\ aT* * Kk . aT* .
QA3 —( )—_+ e w,=04 wp=1, ..., k
) dt\ow,] o, 2 2 Ty 00w
where w, r, a=1, ... , k-number of degrees of freedom, m,-quasicoordinates,

w,-quasivelocities, T*-kinetic energy, QO*-generalized forces.
Relations between . and g, are:

k . . k
wo= > aceqa go= > bo,w, c=1, ... , k
a=1 w=1

where we assume that:

ace=ace(q, .- » qi) bo,=bo,(q; +++ s )

where ¢,(i=1, ... , k) are generalized coordinates. Matrices [aes,] and [bo,]
can be written as follows:

Iz O © Ly' 0 0
[a Gu]= 0 Lo O b6u= 0 ijl 0
0 0 E 0 0 E

where E is entity matrix.

Boltzmann’s symbols v, are defined as:

r £ . aaro aarl
Yu= —_—— bﬂ' bﬂ.'
=2 E.(aq,, aq,,) "

The quasivelocities vector of the aircraft model under consideration is:

-t —_— -
w = cal [wgp, wcpls

where the rigid body (RB) quasivelocities vector is:

wgp=cal[U, V, W, P, O, R]



126 Gorazd Paljaruci

and the vector of quasivelocities of relative control deflections (CD) is:

wcp = cal [scw -SCR1 SCLa .31_5» Ssps B‘H, SFR’ SFL’ Sms -SHL> SV S.m]-

The generalised velocity vector is:

- - —

é = cal [C‘Imaa écn]

where:
q.RB:cal [xEs .];Es z'Ea d), G, IIJ'], éCD=wCD‘
Boltzmann’s symbols ya, (r, «, w=1, ... , 6) which are not zero for the

model under consideration are:

1 1 > 2 3 3 4 5 6

Y35 = Y62 ="Y16="Y43="Y26= Y51 =Yes=Ya6="Ys4= — I,
1 1 2 2 3 3 4 5 6

Y26 = Y53 = Y34 ="Yo1 = Y15 = Y42 = Y56 = Ye4 =Yas = 1.

Introducing the above mentioned and computed symbols into (1) we obtain
Boltzmann-Hamel equations for holonomic systems in quasicoordinates and
quasivelocities for the model of an aircraft with active controls:

d 10T*\ oT* OT*  oT* .
4 # L e _
) dt (aU) oy OV aWQ Qu
oT* T oT* T* .
(5) ii_( )—‘) T p 0 pgp
a\ov) om, ow  oU
d [oT*\ oT* oT* . oT* .
©) w( )— PG Py
a\ow) o=, oU- oV
. £ oT* _ oT* _ oT* _ oT*
7 i(‘)T)—‘g——i W+ Pt g2 p=Ds
at \oP) om, oW oW 00 OR
& oT* oT*  OT* . oT* _ oT* :
) i(‘)T)—‘) I O e Y R
i \og) om, ow  oU OR | oP
OT*\ oT* oT*  oT* . oT* _ oT* .
) i"—( )-‘) N i SRS PR T
i \orR) om, oU ~ov 9P~ 00Q

while for each indipendent control we introduce the equation of type:

T* aT* 18 18
o A

—+3 S éztm—Q"‘S (=17 18)
dt aav aav KW YVG a [ 'k 3 s ey

r

The set of equations is completely defined together with the equations of
kinematical relations (1) and (2).
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Aerodynamic forces and moments measured in Fy, (that are represented
as coefficients which are functions of the incidence angle «, sideslip angle {
and control deflection §,) are available in Fp by applying matrix transformation
L, /1/. Aircraft’s velocity components i.e. quasivelocities in Fp are:

cal[U, V, W]=cal[cosacosB, sinf, cosafsina] V.

Gravitu forces in Fp are expressed as:

m;= cal[—sin 0, cos 0 sin @ cos 6 cos ] mg.

Now, for example, we shall show how to determine the kinetic energy
of the left horizontal canard showed in Fig. 3. To define canard’s translational

FIG.3

[ e S —

and angular velocity we must determine unity vectors i, j., k. of the canard
fixed coordinate axes with the origin conveniently situated in its CG (which
of course does not have to lic on hinge axis).

The angular velocity is:

—_— —_

Q,=(Qpp+ Qp),=Q,+(Qp),

(QT)r = éC.iC

and translational velocity respectively:

Ve=Wpp+ V) =V4+2,x CT+ V),

i J k |
Vppe=Ui+Vj+Wk+ |P Q R

X4c—eclicy—Yac— €cicyZac—€cicz

V), = (Qp), x AcT=38cjc % (—ecic)=3cecke
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Then the kinetic energy of the left horizontal canard can be written as follows:

TZHC =[U+Q(zac—ecicz) +R(Yac+ecicy)+ SC eckex)? mppcl2 +
+[V=P(zac—ecicy) + R (xac—ecicy) =Sceckcyl? Mygcl2 +
+[W =P (Yac+ecicy)=Q (Xac—ecicy) + SC eckcz)? meycl2+
+ (Picy= Qicy+ Ricy)? Jiucy/2 + (Picx + Qicy + Ricz +
+8¢)2 Jrncy/2 + (Pkey + Qkcy+ Rkcz)? Jincz]2 + (Picx + Qicy +

i RiCZ) *(PkCX =+ QkCy+ RkCz) JLHsz

In the same way we can determine the expressions for T* of the other
controls.

Only for she case of single vertical canard and for single rudder are the
expressions for their kinetic energies somewhat simpler, because these controls
have Cxz plane of symmetry.

Let us now concentrate on equations (4)+(9) on the example of right
hotizontal canard. For this specific case they can be written:

Umeg + Qcr, — Rer,— VRMeg + WOm g+ PQcr, + RPcr, —
- Qi‘n - R%'rl - .BICR McgecgKcry — 8CR meg ecg (Qkcrz —
— Rkcry) = (Q0)cr

Vingg — Pcr,+ Rer, + URmcg — WPmcg + PQcr, + QR ey, —
_P%"'z = Ré"z —.SCR Mcgecrkcry + S.CR Mmegecg (Rkcrz —
— Rkcry) = (QV)cr

Wincg+ Per, — Qcr, — UQmeg +VPmcg+ ORcr, + RQOcr, —
—P?;-,3 = Q(zir, = S-CR Mcpecrkcrz — SCR Mg ecr (Pkcry —
— Qkcry) = (Ql;f)cx

—Ver, + Wer,+Per, — Qcr,— Rer, — UQct,— URcr, +
+VPcr, + WPc,,— PQcry— QPcry, + RPcr,— Qr, +
+RZ%,— dcrcry— Scr Qcris+ Scr Rer, + Scr Mcr€cr®
+(Wkery —Vkcrz) = (@r)c

(.fc;-,— Wer, “PCr4+QCr9_ Rer,+UQcr, —VPer, —
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2
. VRCr, P WQCr_, +PQCr5 = QRCn + RPCrIZPCru -
gt om . . .
— Rerg—dcr cryy — 8cr Reryy + 8cg Peryy — 8cg Mg ecr*
*
* (Wkcry— Ukcrz) = (Q0)cr
o UCrz 3 VCr; - PCr5 =i QCrs + RCr-; o URCrl < VRCrz -
2
— WPc,, — WQcr,—PQcr,, + @QRcrs— RPer,— Pcr, +
w ) . .
+ an - 8CR Cris— 8CRPCm + 8CR QCfu = 8CR Mcg €cr*
L
*(VkC‘RX" Ukcry) = (QR)CR-
where the meaning of the coefficients cr, through cr,, is:
cry =mcg (Xcp —€cp icry) cry=mcg (Ycr—€cricry)
cry=mcg(Zcg—€cricrz)
Cry=cr, (yCR —ecricry) —Jcrxicryxicry —Jcry Jerx Jery —
—JCRZ kCRX kCRY - JCRXZ (iCRXkCRY + iCRYkCRx)
cry=cr,(zcg —€cricrz) —Jcrxicryicrz — Jcry Jery Jerz —
—Jcrz kcrykcrz —Jcryz (icrykcrz + icrz kcry)
cre=cr, (Zcgp—e€cricrz) —JJcry icry icrRz —Jcry Jerx JcrRZ —
= JCRz kCRx kCRz — JCRXZ (iCRX kCRz + iCRz kCRx)
. > < 2
cry;=meg (Xcgp—€cricry)” +Mcr (Ver — €cg icry)® + Jeryicry+
2 2 g
+Jcryjerz + Jorz kcrz + 2 Jeryz icrz kcry
B ) 3 . , 2
crg=mcp(Ycp —€cricry)” +Mcr (Zcg — ecricrz)* + Jcry icry +
.2 K2 ’ y
+JeryJcrx+Jcrz kKcry + 2 Jeryz icrx K cry
) 5 ) .2
cro=mcp(Zcgr —€cricrz)’ + Mcr(Xcr — €cricry)® +Jcry icry +
2 2 .
+Jery jcry + Jerz kcry + 2 Jeryxz icry kcry
_ : 2 . 2
crio=mcgr(Ycr— €cricry)” —Mcr (Xcp— ecr icry)? +Jcry *
2 2 2 2 2 2
* (icrx — icry) +Jery (Jcrx —Jcry) + Jerz (kcry — kcry) +
+ 2 Jeryz (icry kcry — icry Kcry)

9 Mehanika 6



130 Gorazd Paljaruci

cry,=meg(zcr—€cr icrz)? —Mcgr (Yer — €cr icry)? +Jcry*
* (itszY_ ’%‘Rz) 1 JCRY(jé'RY _J'(%Rz) 8 JCRZ(k2C'RY - k%ﬂz) +
+ 2 Jerxz (iry kKcry — icrz kcrz)
cry,=mMmcg (Zep — €cr icrz)? — Mcgr (Xcr — €cr icrx)® +Jcrx *
* (l%RX_ '%’Rz) + JCR}’(jCZTRX - "E“Rz) +Jcrz (k%.‘Rx= k%’RZ) +
+ 2 JCRXZ (iCRX kCRx - iCRz kCRz)
Criy,= —Cryécp kCRY +Cr,écp kCRz -+ JCRijRX
cryy=cryecgkcry — cry ecpkcrz +Jery jery
Cris= —Cryécp kCRX +cry ecr kCRY +JCRijRZ-

It is quite obvious that we can obtain the influence of each control in
Boltzmann-Hamel equations of motion of an aircraft if we repeatedly use the
above shown procedure.

After some regroupings and rearrangements, there are derived complete
differential equations of motion of an aircraft together with 10L=74 4.3 15}
equations of controls of tupe (10).

To perceive the advanteges of the suggested mode!, it is sufficient to
review the aircraft’s equations of motion assuming that the controls deflection
velocities are constant. Bearing in mind the above mentioned assumptions, the
equations can be written as:

UCI3+ QC3 + RCZ—VRC]3+ WQC13—PQC2+ RPC3+

18 | .
I Q2Cl + R2C1 - z Sv m, e, (Qk\'z - Rk\’y) = QU
v=7

@_P&'RQ + URC;.?.‘ WPC13_PQC1+QRC3+

18 . *
+Pé2+RéZ+ Z Bv m,e, (Pk\’zuRka)=QV

v=7

I/i/Cm"PC?."}‘Q.Q - UQC13+ VPC13— QRCz— RE G, =~

18 . .
—Pl—Q&— > 8, mye, (Pky,—Qky,)=0w

v=T
_VCB— WCZ+&;3+Q.C4+B‘_C§= UQCZ_URC:&_

_VPC2+WP03+PQC6+QRC11—RPC4+Q2CS_R2C'5

18 . 18 18 &
_Q z 8v Cv15+ Z Sv Cv14+ Z svmvev(WkVy—'Vsz)=QP
v=17 v=17 y=T
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Ucy+ W01+PC4+_QQ+R05—UQCI"f“VPcn“

~VRey+ W0y~ PQcs + QR+ RPg,, — P+ R

18 | 18 | 18 .
- R z 8\JCV|3+P Z BCvls— z Svmvev(Wka_Usz)ng
v=7 v=7

v=7
Uc,=Ve, +_&+QC5+}§Q[— URc, —VRc, +

+ WP, + WQCz"‘PQcm"QRca"‘RPcs‘i‘Pa—Q%:n;—

18 8 . 18 ‘
- 27 3, cvia+ @ Z-; 8 vzt Z—’ 3, m, e, Vky,— Uk,,))=0r

where in the previous models there only the underlined expressions were consi-
dered, while all the others were omitted irrespective whether the aircraft had
the ,,xz¢¢ plane of symmetry or not. :

We shall now consider paralely inertia matrices of conventional A, and
new model A4,:

m 0 0 0 0 0 )
0 m O 0 0 0
e 0 0 m 0 0 0
0 0 0 J., 0 —J,
0 0 O 0 J,
0 0 0- J, O J.
130 0 0 ¢3 c2
0 cl3 0 —-c3 0 —-cl
0 0 cl3 _f% o | 0
4=1To  —c3 ~¢2 | ¢8 c4  c6 |
c3 0 —cl c4 c9 €3
c2 —cl 0 c6 c5 c

The marked antisymmetric three-by-three sub-matrices in inertia matrih A4,
represent giroscopic influences which are not taken into account in previous
models. All dash-underlined coefficients in A4, differe from zero only for differential
deflections of symmetric controls and /or for deflections of single controls
(vertical canard or rudder).

g
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. Modern aircraft, especially those with active controls can produce strong
inertial and kinematical couplings beoause of their complex configurations. The
model of the aircraft under consideration in this work can handle this problem,
and because of that, it permits a more complete investigation of the aircraft

flight qualities in the early design stage or in an already flying aircraft.
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L’INFLUENCE DES CONTROLS DE VOL SUR LES EQUATIONS
DIFFERENTIELLES DU MOUVEMENT D’AVION

Gorazd Paljaruci

Résumé

L’influence des controls de vol sur les équations differentielles du mou-
vement d’avion est discuté par application des équations Boltzmann-Hamel
pour les systémes holonomiques. Il est demontré que pour le cas de vitesses
relatives constantes de deflections de controls de vol on a obtenu un systéme
d’équations differentielles du mouvement d’avion plus complet qui en outre

prends en consideration aussi les influences giroscopiques.

UTICAJ] KOMANDI LETA NA DIFERENCIJALNE JEDNACINE
KRETANJA AVIONA

Gorazd Paljaruci
Izvod

Razmotren je uticaj komandi leta na diferencijalne jednadine kretanja
aviona primenom Bolcman-Hamelovih jednalina za holonomne sisteme. Pokazano
je da je veC za slu¢aj konstantnih relativnih brzina othlona komandi dobijen
potpuniji sistem diferencijalnih jednacina kretanja aviona koji izmedu . stalog
uzima u obzir i Ziroskopske uticaje.
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