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1. Introduction

This paper is continuation of and supplement to [1]. In [1] a statistical
analysis of parallel straight screw dislocations in an infinite linear solid body 73
was perfomed following essentially the ideas explored in [2] and [3]. As a
consequence, the field equations governing the mean (continuum average) beha-
viour were derived. However, a set of field equations derived by means of
statistical methods cannot be a full set and we had to specify some consti-
tutive relation for kinetic stress tensor
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In the above expression m;, is mass of dislocation line per unit length,

C.(j: 1, 2) is the velocity of dislocation line I', 8 — Dirac delta function and ¥
F I
the average dislocation velocity in x,, at instant ¢ Tn the above mentioned

K
paper we assumed the constitutive relation for o;; in the form

(1.2) Sy= —myp (@), p(@)~py(/ag)r=Bo,

where « is the average dislocation density while p,, «, and y are some constants.
We are going to reexamine this assumption in the following text.

2. Statistical equilibrium

Let ¥ be the volume of the considered solid body 73. The body con-
tains N parallel screw dislocations and no external forces or other influences
are acting on 73. The total energy of all the dislocations per unit length
amounts to [4]:
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is total kinetic energy of all the dislocations and
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is total potential energy of the dislocation distribution. In (2.2)
(2.4) m;,=8;,m*=38;,(p, b*/47) In (r/b),

where b is Burgers vector, p, — density of matter and r — some characte-
ristic length. On the other hand, potential energy for two parallel screw
dislocations with the same Burgers vectors equals:
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where {ra is the shortest distance between I' and A dislocations and L — the
dislocation length.

Let us now imagine that body .93 is divided into two parts D and D/,

the part D being of volume AV that is much smaller that ¥ and containing n
dislocations (n<N). Their total energies per unit length are
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so that

(2.9) H,=H+H'+ Hppr,
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where Hpp: is the interaction energy between D and D’. Assuming that inter-
action between D and D’ is weak and that there are no external influences
on 93 we have

(2.10) H,=const~H+ H’,

and dislocations may be regarded so as to be in a statistically defined
equilibrium* On the other hand

(2.11) n+n =N,

where n©AV, n' =N—n=¥—AV) and n can change with time. Consequently,
there exists a strong analogy with an insulated thermodynamic system of
particles D+ D’ consisting of a small system D, heat reservoir D’ and a
perforated partition between them allowing particles to come from D to D
and vice versa.

Let Q' (N —n, H,— H) denote the numb.r of states accessible to reser-
voir D' if the system D contains n dislocations and has some specified
energy H.*

The corresponding probability for system D to have energy H and
number of dislocations n is

(2.12) Py(n, H)=C' Q' (N—n, Hy— H)=C"'Q (v, H').

Now, since n<N and H< H, the expression on the right side of (2.12)
may be replaced by its first order approximation

(2.13) InQ' (N—n, H—H)=InQ' (N, H) - H{0InQ'J0H"}, -
—n{0lnQ'on’},.

Denoting the above constants by

(2.14) B={0InQ[o0H }yg o o> Y={0InQ'[0n'}gy_0 n_o>

*) If kinetic energy of dislocations is disregarded, then for a crystal with n parallel
screw dislocations and ~/4? atoms in cross section the number of accessible states amounts to

(a) Q=) (cf*—n)!n!
The corresponding so called configuration‘‘ entropy [5] equals

(b) S=kinQ,

where k is Boltzmann’s constant. By means of Stirling’s epproximation we finally have

(c) S~k A In (A (N*—m) + knln (<> —n)[n) =
=—kcA*{elno+(1—a)In(1—a)}

where «=n/-/4* is the dislocation density.,
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we obtain

(2.13) Q' (N-—n, H— H)=Q' (N, H)exp(—BH—-vyn)
and

(2.16) Py(n, H)y=Cexp(—BH—vyn).

Therefore, as should be expected, we obtained “grand canonical*“ distri-
bution for dislocation lines. The constants § and vy define statistical equilibrium
between the systems D and D’ and in the casc of molecules of a gas they
are given the names: temperature parameter = 1/kT and chemical potential
parameter — v/ of the systems considered. The first defines the equality of
temperatures in equilibrium and the second one is connected with diffusion
(chemical concentration).

The mean energy H and the m-an numbsr of dislocations n in AV are

ZHeXP(—BH*Y”)z _ilnzexp(ggH—yn),

217D H=
Zexp(—PH—yn) 08

Eaenp (—PH—vr) = uianexp(—BH~yn).
Zexp(—BH—vn) oy

As usually, the expression

(2.19) Z=2XZexp(—BH-vn)

(2.18) n=

is called partition function of the system. The summation should be taken
over all possible states of the system D. For fixed n we have for the partition
function

1 1 P
(2.20) Z=~n—'-f- --fexp(gBH)exp(—yn);z;dzgl...d:’-gndzivl...d“p,,:

_ﬂ—ﬂf : .fexp(L—BH)dzgl...dzfn,

ni A=

where A* is the area of a cell into which AA (cross section of AV) is subdi-
vided and n! appears because of indistinguishability of dislocation lines in AV.
Further, (2.20) may be splitt into

(2.21) Z:reXp(;“(n_)“{f_ . -fexp(——%ﬁm*

n! h%n

>

4 C,) d2pysss dlpn} Zy=
o] = <

F=i
B exp (—xyn) (Zﬁm* )RZU,
n! BAh?
where
(2.22) Zuzf- . -fexp[—-E i U(Cm)]dzll...dlt_".
2 1,81 - &
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Suppose that some external parameter of system D, say x, is changed
by infinitesimal amount 8x. The corresponding macroscopic ,work & W done
by the system D as a result of this change amounts to

Xexp(—BH—-yn) (—()H/c)x)Sx:

(2.23) SW =
Zexp(—BH—yn)
_3x Zexp(—yn) d{exp(—BH)}/0x
B Zexp(—BH—yn)
and if dn/ox =0, then
(2.24) BW:Li{lnEexp(—BH—Yn)}8x=~1—(—a—]nZ)8x:Qx8x,
B ox B \ox

where Q, is the mean generalized force.

Let us now return to (1.1). Taking into account (2.4) and the equal
probability of all the directions for velocities of dislocation lines it is reason-
able to assume that Kkinetic stress tensor has the following form

K . - K
(2.25) Gij (Xm» )= —m* > ((&;—V) (§;—V))3) =9;0.
T r r r
Now, if x=AA then szg and by means of (2.21) and (2.24) we have

(2.26) g:-l— ¢ o 2 InZ,.

B 0(AA) B 0(A4)
From (2.5) and (2.22) it is seen that
(2.27) InZy=f, (@ Ad),
or, with a=n/A A,
(2.28) InZy=f (o B);
so that

K 1 o 0

(2.29) 6=— — f(«, B)=kT— f(«, kT).

B du oo

Finally, if dislocation gas‘ is sufficiently dilute a rather good appro-
ximation to it would be a van der Waals gas and by means of “virial expan-
sion* [7], [8] we obtain

Kl{n 1 n

(2.30) g = o
B A4 2 (AA)?

1.1 {a—iazl(ﬂ)}EkT{a— J—oczl(kT)}.
P 2 2

We may conclude this paper by the following statement. Even in the very
simplified casc when no obstacles to dislocation motion are taken into account,
temperature and thermal activation appear as mostly significant. The above
expressions (2.29) and (2.30) might be improved by applying the same method to
more realistic dislocation and other defects arrangements.
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LE TENSEUR CINETIQUE DU TENSION DANS LA THEORIE
STATISTIQUE DES DISLOCATIONS SPIRALES PARALLELS

M. Micunovic¢
Résumé

La fonction constitutive pour le tenseur cinétique du tension de la dispo-
sition de dislocation est dérivée au moyen de la fonction d’aprés 1’équilibre
défini par la statistique.

On a montré que cette fonction dépend de la densité des dislocations
ainvi que de la température.

KHUHETUYKHW TEH30P HAIIOHA V CTATUCTHUYKOJ TEOPUIU
3ABOJHUX ITAPAJIEJIHUX OUCJIOKALIMUJA

M. Muhynosuh
Pezume

KoHcTtuTyTHBHA (yHKLUHMja 3a KHHETHYKHM TEH30pD HAMOHA IHCIOKAIIMOHOT
pacnopena je m3BeneHa nomohy ¢yHKLHMje pa3/ie/buBalkba HA OCHOBY CTATHCTHYKH
neunucane pasHoTexe. IlokazaHo je na oBa (QyHKIMja 3aBHCM OO TYCTHHE
JHCTIOKallija M TeMIepaType.
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