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NOETHER’S THEOREM AND THE ISOPERIMETRIC PROBLEM IN
CONTINUUM MECHANICS

S. Komljenovié

Introudction. In general, all problems in which one integral is to be
made maximum or minimum subject to the subsidiary condition that a second
integral has a given value, is defined as isoperimetric problems. This
name stems from the famous problem, namely the problem that of finding
the closed curve of given perimeter for which the area is maximum.

If we have the Lagrangian formulation for continuum mechanics (1),
i.e. if development of the equations of motion is in general based upon varia-
tional methods and if we have one constraint of integral type on this motions
then we call this problem isoperimetric*‘ for continuous systems.

The purpose of this paper is to present rigorous derivations of the
conservation laws for this isoperimetric problem based on the Noether’s theo-
rem (2) and Lie’s [3] groups theory.

Preliminaries. To alleviate the exposition, we make here a number of
simplifying assumptions and before describing the class of conservations laws,
to ivestigate we must introduce a few notions. :

The independent variables describing the nature of the mechanical system
under discussion to be designated as x! where unless otherwise stated, indices
i, j, ..., n range overl, 2, .. ,n, while the dependent variables will be designa-
ted as w¢ and where indices a, b, ..., range over 1, 2, ..., m. The partial deri-
vatives of the dependent variables with respect to the independent variables

. 2 0
will be indicated by the index notation as by the following examples B—_E(),.,
xl

and partial derivation of some function with respect on dependent variables

—0,. Summation convention will be used.

as
0 ua

Isoperimetric problem. Suppose that we have a motion of a continuous
system with integral of action in the form

(l) szl(xfi ul, u',-’.)dm,
D
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where / is Lagrangian density, D -"region* of integration and dw volume ele-
ment. Next suppose that this motion is constraint by given integrals in the
form

(2) 9{=fk(x‘, ue, u)do,
D

and where k is some Lagrangian density. Then a statement of isoperimetric
problem for continuous system is to find the path in configuration spaces
such that integral L in (1) is an extremum and such that the class of all ad-
missible curves in configuration space assumes specified values on the boun-
dary of D denoted by 0D and simultaneously render the functional % equal
to some specified value K.

To solve this problem we can now use Lagrange’s method multipliers
for extremizing functions of several variables where these variables are subject
to various constraints. Let a new functional be defined by

(3) j'=f(1+xk)dm,
D
or in the form
“ F = [ L, w, wf)do,
D
where
(5) F=I1+\k,

and A is Lagrange’s multiplier and it is constant.

Lie groups and its extension. Suppose that we have r-parameter’s Lie’s
group of transformation

(6) x=fi(xi, us, a),
(7) u* =% (x', u%, a),
where a=(a', a2, ..... , a’) are parameters of groups and functions f* and ¢°

are class C® in each of their arguments. Then as it is known (3) infinitesimal
operators of the group G have the form

(8) Xy=Eq0,+150,,
where
i df‘ a ()CP‘Sl
9) Ea= ; «= g Bl @il
04a*| =0 . 0a* a=0

Thiese operators satisfy the folowing relations

(]0) [Xun Xﬂ]=CZB XTs
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where Cqs are structure constants (3). Operator of the extended group de-
noted by X is given as

~ s il 0 *
(1) Xa=Xa+tia—;-+Ca ——
ou’; 0(dw)
where
(12) {ia=Dina+u’; D, EL,
(13) D= o +ut -2,
ou°
9 (dw) | ‘”(i)
(14) == =— L _pEL
* oa* a=0 0a* a=1 E

Noether’s theorem for isoperimetric problem. Suppose that we know the
functions u*=u?(x) of their arguments and if we substitute it in (6) and
solve it with respect to and use (7) we obtain

(15) u=g°(x, a*),

If for all function «? and for all transformations (6) and (7) the following
relations

(16) [2 e wtydo- [26 e uns (Yo
X
D D

are valid then we say that the functional is invariant in respect to transforma-

X

tions (6) and (7), where D is the region of integration and J( ) is Jacobian of

x
transformation. The relation (16) shows that the functional (4) is invariant with
respect to the extended group G, namely groups extended for dw and u’;. On

the one hand it is well known (4), that a functional F be invariant in res-
pect to the group G is, that following relations are satisfied

(17) X13=(iiafg+nzaag+::,%§§)+D,.g;.._ 0,

u i

or after some calculations and rearrangements these expressions we can write
in the following form

(18) 9288°?+D,- (AL =0,

ua
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where we have used the relation (11) and where
(19) pa=ne—ulika,

3
(20) Z =a°2? - D 0.7

dut  ou° oul’

(2]) Af:-':('f): JE.»J j'l'c?gm

After substituting (21) in (18) the relation (18) can be written in the
form

(22) us 8°29+D( 207 +,5f£a),
3u® t)u,,
or in the form
23) (n%- ,zf)(“ 18—") D,-[(n:~u,‘;££)( o,
S u® du° ou.;
e aka)+(1+?gk)ii}]=
u g

As itis well known (2) that Nother’s theorem is concerned with conse-
quence of invariance functional . at (3) under special circumstance in which
u® satisfies the Euler-Lagrange equations

3/ +18k

Sut S u®

(24) =,

After it, we have that following relations are valid

(25) D.-(zjiﬂfi)=0,
where

(26) z;li:("qi ,a’) +1Eg,
and :
(27) f;=(na~u,a) >u! +k Eq.

Now we are in position to formulate the following (Noether’s) theorem: If

the functional ., is invariant under extended group G of transformations
then the following r identity is true

(28) D, (A% +2A)=0.
] k



48 S. Komljenovié

for «a=1, 2,..., r, where A; and A, are given explicitly in (26) and (27)
i k

and where D, is given by (13). The formula (28) my be interpreted in a
well known manner as expressing conservation laws in differential form.

Specification on the case of continuous mechanics. If we wish to use the
previous theory on continuum mechanic. we must accommodate it for this case.
Therefore, let us have a vector field »® and it is a displacement field where
a=1, 2, 3 and x°=¢-time, x'(i, j, ...=1, 2, 3) be rectangular cartesian coor-
dinates.

As has been shown (5,6), that for the case of a linear elastodynamic
for a Lagrangian density we can give

1 1
(29) = E lijkl U j U1 — “5 U u;.

In the same paper was shown that the group of invariants of Lagrangian
density has the form

= = . i i — I ;
(30) t=(a1t+ao), X'=o; X' +ei ocjzx"-f—ag,u“=oclu"+e§}a4uf+s§ aéx'-i—a‘s'.

If we take this group as permissible and make the corresponding subs-
titution, then as laws of conservation we obtain the following relations

O fu 0l " 0 a 01 i
31 —|Sa ——+1E. )| +— (S, +1E,)+
(31) dr( ou’ é‘::) Ox'( ou’; 5)
+A 3(33 oK +k£;)+ ‘)_(sg ‘”ﬁ +1£L) =0,
ot ule ) 0xi ouj,
where
(32) Se=ng—ui1be—ujEL

The expression (31) represents the differential form of the conservation
laws.

For application of above conservation laws it is necessary to know
the constrain respectively the density of constrain k. It is obvious that k can-
not be arbitrary and it is must be such a one which permits the group of
invariant as /.

As a simple example let as have the constrain be given as a functio-
nal of the form

(33) %:fsz(x’, us, u’;)dv dt

v

where k=38, 8;,,u, ;u;,, and x'=x;.

i
%, 2,3, 4,5 are constants and e =e;;
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If we substitute the expression (33) respectively the density k in the
form (31) then for the differential form of the laws of coservations we ob-
tain the following relations

. 1 1
(34) (), (—i—l,jk[u,.juk.['i"—{ﬂ,ﬂj)-}-a‘r(—u} Gl'j)+

+A [0 k+0;(—wuy;)]=0,
(35) 0 (p %)+ 9; (— o)) + A 0; (1, ) =0,
(36) 0, (psijk X; ) + Ok (Eijm X Omic) +
+ A 0 (Eijk X; u,)=0,
(37) O (pwuy,)+ 0 (—uy,; o+ 8in 1) +
+70; (—u,; Unk =0,
(38) O [p oy (u;+ Xp iy + 1 w)+ tl] +
+ O [ — o (U + Xputty, m+ ) + Ix, ] +
+ 0 {0, (tk) + 0; [(u; — s, — w;, ; X)) uy, + x; k} =0,
(39) 0y (PEijk Uy Uy + OEijic Xj U Upm,ic) +
+ Ok (€imj Um Oji — Eimy Xj U, m O +
+ Eimpe Xm D)+ 0y [(ey u;—

— € Yy, j R it .+ Ek Up, j Xk I1=0.
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TEOPEMA HETEP U U3OINEPUMETPUYECKAS 3JAJAYA
B MEXAHMKE CIUIOWIHON CPE/[BI

Cmeso Komavenoeuy
PeszomMe

B aroii pabore wccnenyercs o6pasoBanue 3akoHOB COXpaHEHMS H30IepH-
METPHYECKOro npodJjieMa B MeXaHUKE CILIOIIHOM Cpebl.

IMonsyscey rpynnoit JIu muBapuauTHOCTH HMHTerpajia HeHCTBiis M MHTerpaia
KaTOpHH Ha3HBAeTCA NPUHYX/CHHE W TeOpeMOM Hérep dopmupysercs 3akoHsl
COXpaHeHHS.

IIpunoxenne CTaTbH WITIOCTPHPYIOTCH OMHBIM IIPHMEPOM.

NETEREVA TEOREMA 1 IZOPERIMETRIJSKI PROBLEM
U MEHANICI KONTINUUMA

S. Komljennvic¢
Rezime

U radu je pokazano da je uslov invarijantnosti funkcionala (16) u od-
nosu na neku dopustivu Liovu grupu G dat izrazom (23). Polazeéi od pret-
postavke da je sistem konzervativan i da vazi uslov (24) koji predstavlja
Ojler-LangraZeve jednaine problema kao uslov invarijantnosti dobijaju se iz-
razi opisani relacijama (25).

Kao ilustracija daje se primer teorije elasti®nosti za koju je LangraZeva
gustina data izrazom (29) a integral prinude izrazom (33). Grupe invarijant-
nosti funkcionala date su kona¢nim transformacijama (30). Za tako defini-
sani problem formirani su zakoni odrZanja (34 — 39).
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