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1. Introduction

It is well-known that an engineering idealisation of aerospace and similar
structures leads to a finite-element model which is, usually, an assemblage of
membranes and bars. In the most general case, such structures are dynami-
cally and thermally loaded. Consequently, structural analysis software should
be based on a sound enough thermomechanical foundation. Although, in past,
the finite element structural dynamics and heat conduction problems were
frequently solved, the coupled situation was studied only in some special cases’.

The aim of this paper is to develop the linearized equations of the
coupled thermomechanical problem. These equations are necessary, if we use
the implicit approach in the solution of the coupled problem. There is no
evidence in the available sources that such equations were published earlier.

2. Field equations

We start from the membrane equations of motion
(2.1) (s N*®a+p F=px'
having the boundary conditions
(2.2) Ni—xi N*8vg=0
and from the energy balance equations
(2.3) pOn—gPlg—pr—0=0
with boundary conditions
(2.4) 7~ 4"
In these equations

x=xi(€*t) i=1,2,3
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are the Cartesian coordinates of a point at a membrane,
(2.5) x!l =0x![o&*

are the coordinates of a base vector,

(2.6) E% a=1, 2

are the intrinsic coordinates of a point at a membrane,
N*® — the tensor of the membrane forces,

e — the surface density of a membrane,
F' — the surface forces,
x' — the acceleration at a point X/,
Ni — the boundary forces,
vg — the outward normal vector to the boundary,
0 — the absolute tempe ature,
n  — the specific entropy,
q — the heat flux,
r  — the heat source,
1 . _ . :
2.7 dE?N“Baaa—p(tPMﬁ)
the internal dissipation,
28 yp=8;; X X}

the fundamental metric tensor of a membrane, and
¢  — the free energy.

The upright line denotes the covariant differentiation with respect to Z°
and over dot the time differentiation.

3. Constitutive equations

3.1. Thermomechanically simple materials. 1t can be shown'? that ther-
momechanically simple materials are characterized by two constitutive functi-
onals. Particularly, for membranes these functionals have a form’

ER) b= s (=) 0¢-9 ap®), 00,

(3.2) g* = Z;[aaa(r—s), 0( —5); dgg (1), 0(t), O, (1)]

and describe a free energy and a heat flux, réspectivc]y. In (3.2) 0,=00/0&"
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The membrane forces, entropy and internal dissipation are now deter-
mined by the functionals ‘

(3.3) N®*=2pD,, ¢
(3.4) n=—Dy¢:
(3.5) 0= —pdy

In these expressions D, , and Dy are the partial derivatives with_ respect
to aus(t) and 0(¢), while 8 is a Fréchet differential, linear in ayg(f—5)

and 0(r—s). In subsequent work we also need a time derivatives of the func-
tionals ¢ and gq.

(3.6) b =8 +ayp Doy b +0Dg
(3.7) q* =38 q*+ ayg Daan“qLé Dy q“+6aD9“ 7~

3.2 Isotropic linearly thermoelastic material. For an isotropic, linearly
thermoelastic membrane’, the functionals (1) and (2) become the functions

Po =E—Ql+v—(2p.Dl+vcx+CD)9—
2 1—-v 1—v
_wD 1_+_"(1_2050),4“5%94_(2p.DI+Voc+CD)6+
2 1-v )
+_I_ P‘D [V A%8 qu’-!-(l—‘l) AaxABQJ] Aup Ayy —
4 1—v
1+v 0
(3.8) —uD xA*® ay30—CDOIn —
®
(3.9) g*=Dx A% 0

where D, A** and p, are respectively the membrane thickness, contravariant
metric tensor and surface den ity in the reference configuration, p the shear
mecdulus, v the Poisson’s ccefficient, « the ccefficient of thermal expansion,
C the specific heat, » the heat conduction coefficient, and © the r>ference
temperature.

4. Finite elements

4.1. General. Let approximate a membrane by an assembly of elements,
interconnected at their boundaries. To each element we associate a separate
set of convected coordinates £*. The Cartesian coordinates of a point at a
middle surface of the membrane element are

(4.1) W PEED XL (1); K1, ¢u0 o n

where PX are the suitably selected interpolation functions, x{ are the nodal
coordinates, and n is a total number of nodes. The nodes are the characteristic
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points necessary for interpolation. The velocities and accele ations of an arbi-
tary membrane point are now
i PK i« gi_ pKyl
(4.2) X=PEy; #=PFi

where x;( and xk are the nodal velocities and accelerations. The base vectors
(2.5) become now

(4.3) B =Pl FPE=pPEHC?

According to (2.8) the fundamental metric tensor will be

4.4) Aup = BUPfP{; xxl
and its time derivative

(4-5) ‘.’mﬁ =2 Sij Bf[f xi‘( xi
‘where

4.6) B~ (PY PE+ PLPE)

There is no obstacle to approximate the absolute temperature by the same
set of interpolation functions, so that

(4.7) 0=PKO,
(4.8) 0=PK 0,
(4.9) B, = PX0y

where 04 and G)K are the nodal tempcratures aad their time rates, respectively.

4.2. Equations of motion. In the Galerkin method?, we approximate
the weak solution of the equations (2.1) by the set of linearly independent
functions PX(g%).

(4.10) > [ N*®)jg+ p (F = %)] PLdS =0
€5

Making use of a divergence theorem, the boundary conditions (2.2) and the
relationships (1) and (2) we get the equations of motion in a discrete form

4.11) MXL g4 SKL xi — RLi

where

(4.12) MxL_3 [0 PEPLGS
€s

are the entries of the mass matrix of a complete assembly. Further

(4.13) ske_ 3 [ N*® PX PidS
¢S
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are the members of a force matrix, and

(4.14) RU=3 [pFiPLds+2, [ NiPLds
Cs GS

are the nodal forces. In these expressions the integration is carried out over
the domain of each element, and summation includes all the elements of a
system.

4.3. Heat conduction equations. We approximate the weak solution of
the equation (2.3) using the same system of functions PX as before.

(4.15) > [(p0m—g*g—pr—0)PLdS=0
s

Applying the divergence theorem, the boundary conditions (2.4) and the
expressions (6), (7) and (8) we obtain the heat conduction equations in a
discrete form

(4.16) OKLO, + GL— QL — 9L =0
where
(4.17) o= [on PKPLAS
¢S
(4.18) GL=> [ ¢ Pids
s
(4.19) oL=3 [orPLds+2 [qPLds
S L o
(4.20) o=> [PLods
&5

The heat conduction equations, basically equivalent to (16), were origi-
nally developed by Oden!. These equations are very general, and their form is
independent on the material properties. Unfortunately, from the point of view
of the effective computation, these equations are not very practical, because
the temperature rate is contained implicitly in (16).

We consider now the special case of heat conduction equations, for a
thermomechanically simple material. Making use of (3.1), (3.4) and (3.6), we
can write that

(4.21) = — 8Dy —ayy Doy, Dop—B Doy

ax¢

Having further in mind (4.5) and the symmetry of the expression Daaa ¢, in
accordance with (3.3) we can write the equations (15) in a form

(4.22) DFIL xp, + UKL, + JKL Qg 4 GL — QL — 0L =0
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where
(4.23) DML = - 23 [ 00x, PLP{ D, Doy dS
¢S

(4.24) UKL= 3 [ o0 PKPLD} { dS

ve
(4.25) JRL_ _ 3 [ o PXPLD,SY dS

s
(4.26) o= - [oPL3YdS

¢S

The equations (22) were originally developed by the present author®. Their
advantage is the explicit appearance of the temperature rate 0y, a fact of a
paramount importance in the explicit numerical solution procedures.

5. Linearization of the equations of motion and heat conduction

If one wants to solve (4.11) and (4.22), using implicit methods, it is
necessary first to linearize these equations We rewrite (4.11) and (4.22) in
a form

(5.1) Q¥ = MY 3] + SY x{ —RY =0
(5.2) @7 = D 5+ UM O, +J70,+GT— Q7 — ' =0

describing the state of a system at a moment ¢.

The state at a moment ¢+ /4 can be determined making use of a Taylor
expansion

Q5 = OV + MV (x}— x7) + hSY x} + SV (xy — x}) —
(5.3) —RZ?+RT+  higher order terms in A=0
®; = &7+ h D' x4+ DI (xTi— xp) +
+hUY6,+ UV (6] -6,)+
+hJY 0, +JV (0] -6, +
+h G —(Qn— Q") ~hd'+

(5.4) + higher order terms in A=0
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After the effective determination of the time derivatives, and some lengthy
but simple algebra, neglecting higher order terms in /4, we finally obtain the
linearized equations of motion and heat conduction

MUY & (K19 ST xhr Lol =
(5.5) =Ry + K% x,;+ LY 0,—h§ RY
DliJ 'i'Ir‘h + FliJ - Uv elh 31 HV 4 JIJ] 9m=
(5.6) —Qp+ F'd X, + HV0,— GT+ &' + h N

In these expressions

(5.7) M1I_Y [ 580 PIPIdS

€s
(5.8) =23 [ 08/ PP D, ,bdS

€5

(5.9) KTidi — 4§Sf o xI Xy PyPyD, , D, bdS
(5.10) SRY = Zsf e xiPyD, ,d)ds
(5.11) =3 [ox P{P'D, Dy ds

¥
(5.12) Dl — —2§Sfp_ﬁx; P'PyD,  Do}ds

Fil= —23 [00x, P!P{D, Do} dS—
LA

Doy dS —

= zgsf p0 & PIPLD,

—22f§0x;PJP$D%De¢dS-
¢S

-23 [p0X, P/P{D,  Dy5ydS+
L

el | 1
+2ezsf o X, PIPyD, SYdS+

(5.13) +23, [x, P{PyD, , q*dS
L
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(5.14)

{5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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U= -3 [p0P P/D; §dS
‘s

HY = -3 [0 0P P/D;§dS
£s

~> [e0PIPID; Y dS
€3

-5 [e0PIPI D} 3¢ dS
€5

+> [ P'PI D54 dS
o

+3 [PIPiD,q*dS
8

+
b

[ P2 P§ Dy, q°dS
§

JU_— 3 [oP'PI D8 dS
¢S

0'=> [oPlras+2 [P’qds
e e C

tn

o= -3 [pPI8¢dsS
£ S
G'=3 [ Pig*ds
es
N=-3 [ o8P/ D,8{dS
€ .8

+2 [ep!82¢ds
€s

+> [ Pisgeds
£5
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6. Example

6.1. Isotropic linearly thermoelastic material. Using the constitutive equa-
tions (3.8) and (3.9) we reduce the expressions (5.7) —(5.11), (4.14) and
(5.12) — (5.19) to

5.7) M3 [ o 8 DPI P! dS,
e SO
sii_S [ 3Pl P I”D (v A A% 4 (1 —v) 4 APV]ay,
e SO
(5.8 —(1+v)[1 +2a(0—0)] 42} dS,
(5.9) k=23 [ 1k xl PEP] I*LD [v A% A% + (1 —v) 4™ A%Y] dS,
e SO —V
(5.10) SRY=0
(5.21) RY=73 [P’p, DF} dS,+ 3, [ P’ N} ds,
e So e Cg
(5.22) RY=73 [PIo, DF dS,+ 2. [ P! N’ ds,
(4 SD e CO
(5.11) LYi= —2% [x\ PiPlap
€ So -
(5.12) piv-23 [0x P’P¢apD:+VAx¢dS
€ So
F’flzzzfexiplpiagpl“AX*dS +
e Su G
(5.13) +22f0:‘c;P’Pﬂ,ocy.Dl+vAx¢dS
€ SO —
(5.14") vv=73 [PIP!DCS,
e SO
(5.15") HY =7 [ PiP{ Dx A** dS,
e SO
(5.17) Q’=3 [P o,DrdS+ 3 P’qds,

CSO
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(5.19) G'=3 [0,P}Dx A dS,
(5.16") 0 JY =0
{5.18) ¥ =0
(5.20") A =0

In these expressions, K’/ are the entries in complete stiffness matrix.
For the membrane finite elements, K" were published earlier®. The same is
true for the mass and force matrix entries. The members of thermal matri-
ces UY and HY are the membrane specializations of the otherwise well known
quantites®>. However, the connecting terms L/%, D'/ and F'’/ were not pub-
lished before. All integrations in this section are performed in the reference
configuration.
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JIMHEAPU3NPOBAHHUWE VPABHEHUWA COHPHKEHHOﬁ TEPMOME-
XAHUYECKOM MPOBJIEMBI OBIIEM BE3SAMOMEHTHOUW OBOJIOYKU B
METOJE KOHEYHHUX SJIEMEHTOB

M. BepxoBuu
Pe3zwmMme

B Hactosme#t paboTe paccMmaTpuBaercss INpoOjieMa KOHEYHHX 3JIEMEHTOB
O6esmoMeHTHOH OOoNovku. HaumHas ¢ ypaBHHMSAMM TOJIE M OTpeNeNSHOIIMMHU
ypaBHeHHsiMH Oe3MOMeHTHHMX 000JI0¥ek, W HCmoab3yst npouenypy [anepxuHa,
BhiBeJIecHH HeJUHEeWHHe YPaBHEHHS MABHXKEHHMS M TelJONPOBOJAMMOCTH B KOHEYHO-
-3neMmeHTHOH (opme. TloToM, ucnonb3ys pas3BuTHe Teiopa MO BpeMeHH, 3TH
ypaBHeHUs JuHeapu3uposBaHHu. KoHeyHo, B kayecTBe HpumMepa, aHAJIM3HPOBAHHH
ypaBHeHHs ONUCHBAIOLIME IOBeAeHHe JIHHEHHOH TepMoynpyroi O6e3MOMeHTHOM
000J10YKH.
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JIMHEAPU30BAHE JEJHAYWHE CIIPETHYTOI' TEPMOMEXAHUYKOTI
[TPOBJIEMA OINWTE MEMBPAHE ¥ METOJIH
KOHAUYHUX EJIEMEHATA

M. Bepkosuh

N3Box

V oBoM paay je pasMoTpeH mnpobieM KOHAYHHX eJieMeHaTa MeMOpaHa,
MHTEPECAHTAH M ca [JIeAMIUTa NPAKTHYHMX NpHMeHa Yy 00JacTH TaHKO3M/IHHX
koHcTpykumja. Llue pana Oumo je ma ce m3Beay JiMHeapM30BaHE jeJHaYMHe chpe-
rHyTor npobyieMa, HeONXo[He NMPH HMMIUIMLUMTHOM pellaBamby.

[Monasehn ox jeqHayMHa MOJba ca TPaHMYHHUM ycjoBuma (2.1—4), KOHCTH-
TYTHBHMX je[lHaYMHa 3a TepMOMEXaHHMYKH npocT Matepujaa (3.4—7), KOHa4yHO-
-eJleMeHTHMX anpokcumMaimja (4.1—9) u [Nanepkunose npoueaype anmpokCHMHpaka
cnabor peluemwa, moOHjeHe Cy AMCKPETHE HeJlHHeapHE jeJHa4YMHe KpeTama M INpo-
Bohewa Tormuiote (4.11) u (4.16) pecnexTuBHO. 3a TEPMOMEXaHMYKH NPOCT MaTe-
pHUjas MoKa3aHo je 1a jeAHaudMHe NpoBoljema TOIMJIOTE MOTY Ja ce pelle eKCILIH-
IIMTHO [0 NPBOM M3BOJY TeMIepaType Ho BpeMeHy (4.22).

PassutkoM y pua Taylora mo BpemMeHy M JMHEApH3alMjOM, jeOHAYHHL
Kperawa M npoBohema TOnJoTe cy cBeleHe Ha o0Juk (5.5) u (5.6) pecnekTHBHO,
NpH 4eMy CY eKCIJIMIMTHO JATH M3pa3u 3a M3padyHaBare KoeduumjeHaTta 100m-
jeHor cucTeMa JHeapHuX . j. mpyror u mpBor pega (5.7—5.20). ¥V cBojcTBY
npuMepa PasMoTp:H je ciy4aj M30TPOIHOT NIUHEAPHO TePMOEIACTHYHOT MaTepH-
jana, ¥ TOKa3aHo je Ma ce Koe(MIMjeHTH JeIHAYMHA 3a CJiyyaj HeCHperHyTor
npobiemMa cBoJe Ha TO3HaTe wu3pase (8) (99 (14), (15"), nox noBesyj iyhu
xoecbnuujenm (11) (12), (13') u 3a oBaj pelaTHBHO jeTHOCTABaH CJy4a] HHCY
OunM paHuje NMyONMKOBAHH.

Osaj pag je geo uciipamcusauxoi upojexwia Qunancupanoi ipexo IT. M. D -a og ciupane
3ajegnuye nayxe C.P. Cpouje,

Mnanen bBepkosuh
Ba3ayxor10BHOTEXHHYKH HHCTHTYT
11132 Xapkoso — Beorpang
Jyrocnasmuja



