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1. Introduction

Recent applications (e.g. [1], [2], [3]) of a twodimensional conservation
law often referred to as the J-integral to the important field of fracture me-
chanics, have generated interest in the theoretical foundations of conservation
laws in elasticity. The J-integral was obtained by Rice [4] in a paper devoted
to the analysis of stress concentration near the tips of cracs and notches.
Although the path-independent integral used by Rice can be traced to the
earlier work of Eshelby [5] on she theory of dislocations, much of current
interest in these integrals and their applications was stimulated by the results
reported in [4].

In a recent paper by Knowles and Sternberg [6] it was shown that
J-integral or the conservation law of Rice, as well as its three-dimensional
analogue, may be generated systematically with the aid of a theorem due to
Noether [7] on invariant variatinal principles in conjuction with the principle
of stationary potencial energy. Roughly speaking, Noether’s theorem states
that if a given set of differential equations can be identified as the Euler-Lag-
range equations corresponding to a variational principle which remains invariant
under an r-parametar group of infinitesimal transformations, then there is
an associated set of r conservation laws sati.fied by all solutions of the original
diffe ential equations. This procedure, moreover, yields two additional concer-
vation laws. Finally, it was shown that, within the context of linear isotropic,
homogeneous elastostatics, the three conservation laws are complete in the
sense that they are the only ones furnished by Noether’s theorem.

In [6] and in later paper by Geeen [8], it was shown that analogous
laws exist for finite deformations of homogeneous elastic materials, but the
completness of these conservation laws, within the frame work of Noether’s
theorem, was not proved. In [8] a direct approach was used to demonstrate
that the conservation laws follow from certain symmetries which are sat.sfied
by the strain energy function.

The results of Knowles and Sternberg [6] are extended to linear elasto-
dynamics by Fletcher [9].

More recently, Chen and Shield [10] have investigated, out of framework

of Noether’s theorem, completeness of the conservation laws for finite elastic
deformations among the class of laws expressible as functionals linear in the
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stain energy W and its first derivatives with respect to to the deformation
gradients. It appears that the completness of the conservation laws, using
Nother's theorem, in nonlinear elasticity is considerably more complicated than
the analogous question in the linearized theory.

Aifantis [11] considered conservation laws for linear isotropic stress fields
in the presence of body forces derived from harmonic potentials, and for
symmetric stress-diffusion fields surrounding line cracks.

The same problem was considered by Gurtin [13], [14], Smelser and
Gurtin [15) for bi-material bodies. In [14] ‘t was remarked that similar path-
-independent integrals can be derived for both dynamic and quasi-static linear
viscoelasticity utilizing the convolution as the basic tool.

It is our purpose to extend the investigation of conservation law to the
thermoelasticity. We show how they can be generated with the aid of Noether’s
theorems. These theorems are, in our opinion of considerable importance in
field-theoretical applications since they establish the existence and precise na-
ture of certain conservation laws which result from the given invariance
requirement. Moreover, we shall show that the completness of conservation
laws, using Noethsr’s theorem, in nonlinear thermoelasticity is not more com-
plicated than the analogous ques.ion in the linearised theory.

2. Preliminaries. Restricted version of Noether’s theorem

Let £=(E)(x=1, 2,..., n) be a point in rectangular Cartesian coordi-
nates of m-dimensional Euclidean space E,, and let R be a bounded, closed,
regular region in E,. Let WW,(&) (a=1, 2,,..,p; r=1,..., m) and

a a

e(Z)(b=1, 2,..., q) be arbitrary p-vector fields of m components and ¢
b

scalar fields, respectively defined and twice continuously differentiable on R.

Let us suppose that we are given some one-parametar family of trans-
formations

(2.1) X=X(X, 7),

in which v denotes the parametar of the family, and where by definition
(2.2) X=_(, EV(E). LP(E))-

For n=0 the transformations are required to reduce to the identity
(2.3) Xeo=2X, =X

Hence the infinitesimal transformations corresponding to (2.1) are given by

(2.4) X=X+ Dn:0(n),
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so that
dX dX
00 8. p={%) (X
( EY) dnlyae \dnlo
(2.5)
dW d
() (). 1=
d o' a dn o’ b d"io
Further, suppose
(2.6) L=L{Z).

is a real scalar function defined and differentiable for all values of its arguments
Z=(E, W, VW, o, Vo),
a a b b

(2.7
VW=gradW=W,,), Ve=grado=(p, «)
a a a b b b

Then we write

L, o= i L (Z)s Ls wi = i L (Z)’ L’ w[.ﬁ.: a (Z)’
()E_’u a ()W; a i,a.
(2.8)
0 0
L g=—L{Z), L9 .~ L{Z)
b ()(p b ()cp,a
b b

provided the foregoing differentiations are meaningful. By L, « we denote the
partial derivative of L with respect to &, to distinguish it from the total
derivative L a.

Now we define a functional _% on class of a given fields X by the formula

(2.9 o‘z‘f(\;", f)=fL (Z)dE,

where L is given by (2.6). The functional _% in (2.9) is said to be invariant at
(2.10) Y= (W, 9)
a b

under transformation (2.1) if

(2-11) | fL(Z)dész(Z)da,
R R

for all sufficiently small values of (v). If, for a given Y,

(2.12) [;{%!L(Z)di]():o,
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then & is said to be infinitiesimally invariant at Y. Evidently, if % is in-
variant at Y then _% is infinitesimally invariant at Y.
Now we can s‘ate a restricted version of Noether’s theorem 1:

Let R be a domain in E,, and suppose Y satisfy the Euler-Lagrange equations

(2.13) L w (Z)- 3‘;— [L, wi, o (2] = 0.

Then _% in (2.9) is infinitesimally invariant at ¥ under transformatons
(2.1) for every bounded, regular subregion R of R iff satisfies

0
(Lma(X)+L:wi.ari(x)+La‘f’ag(x))'*'
(2.14)
el Bt B e
bq( S AFYS ’f’“) '
where
(2.15) ri=Bi—W: s% q=Y—9, s%s-
a a a b b b ‘

In a case when Y also satisfies the equation

(2.16) L, 6@~ L, 1, . @)=0;
b o0& b

o

then _# in (2.9) is infinitesimally invariant at ¥ under transformations (2.1)
iff Y satisfies

(2.17) -Q—(Laa+L, Wi ol +,0,9)=0%*
ai a b b

o

Proof of theorem 1: Let _% in (2.9) be infinitesimally invariant at Y
under transformations (2.1). Then (2.11) holds Using the Jacobian determinant

_ az
218 i L
(2.18) J(, £) det(a Es)
we can write (2.12) as
d -
2.19 — | L(Z)JdE} =0.
(2.19) { - f @) a}o

Since the region of integration R is independent of the parameter % and
arbitrary we obtain the following necessary condition

d = —  Idl
2.20 B Ty S LT ) b,
(2.20) @I L )o\dn)o

Here throughout this paper summation over repeated subscript is implied.
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It is evident, from (2.4) and (2.5), that

d. -

@2.21) i, (—’) —apn  L{Z)=L(Z)
dn/,

dL(Z) . ..
When quZ) is differentiated with respect to 7, one obtains
il £ _)—L o dz“+L W, dﬁVl+L W, dWi'a+
d’] =L, o d_n :‘fld » e g
(2.22)
do do,,
Lio->+L, o, —

b dn b * dy

Differentiation of (2.4) and (2.5) yield the following relations

d-a_ dW‘ deu
( d) = g ( - )=Bi! ( - )=Bi.a_u/i.ﬁaﬁ.a
d'f) 0 dn 0 a dn a a
(2.23) -
d‘P ch!a
(—") =, ( ’ )='rs —®, g g
d'q o b d7] b " b He

We also need the relation

(L aa)’a=L’aaa+L$wi Wi‘ aaa+Ls wi. BWl. Ba %y +
a a a a

(2.24)
+L’ cpCP’a:‘xu+Lr ¢B Ps Ba aa‘*'L“u. a*
bb b b

Using (2.21-24), after some manipulation, we obtain

0

P

0¢,

0
(Laa+L,w,.,,,r,-+L,,cp,aq)+q(L,qJ—— L,Cp,a)+
a a b b b b ()E b

(2.25)
+r,""—(')'—(L,w1_iL,wi’a)=O,
a 0, a 0k, a
where r; and g are given by (2.15). Then (2.25) and (2.13) yield (2.14). If Y
a b

also satisfies (2.16), we have (2.17).

The sufficiency follows immediately from (2.13), (2.14) and (2.25) or
from (2.13), (2.16), (2.17) and (2.25). Q.E.D.
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We note that the statement of the theorem given above is more general
then that used in [6] and [9].

In general. we shall speak of (2.14) and (2.16) as the conservation laws.
The usefulness of the Theorem 1 as a device for generating conservation laws
in any particular branch-of mathematical physics depends on the existence of
regular mapping (2.1) with respect to which the stationary functional (2.9) is
infinitesimally invar ant.

In this form Noether’s theorem may be applied to the theory of elastic
dielectrics, thermoelastic diffusion and micropolar theory. We shall confine
our attention to the theory of thermoelastic materials when a, b=1 and
w;=x; and ¢=0.

1 1

3. Thermoelastic materials

We now recall certain results from the theory of finitely deformed homo-
geneous and isotropic thermoelastic solids. In this connection we assume the
absence of body forces and presuppose the existence of an elastic potential.

We use coordinates referred to a fixed rectangular Cartesian coordinate
system to describe particle locations. During a deformation of the unstrained
body 73, a particle at the point Xg in 73 is displaced io the point x; in the
deformed body 93*, with

(3.1) X =% (Xg; 1) k; =1, 2, 3).

Further, we require that this mapping is one-to-one so that the Jacobian
(3.2) J=det (x;, )70

at all points of 3. The deformation gradients x, , satisfy the nine linear equations
(3.3) X, k Xx, 1= s> Xk, k X, L= OkL-

The local balance laws in the reference frame X, are listed below for simple
thermodynamic processes [15]:

the balance of linear momentum

(3.4) Ti, k= Po Xks
the balance of moment of momentum

(3.5) Ty, X1, k=T g1 Xy, k>
the balance of energy

(3.6) p€ =Ty X, k+ Ok, x + Po h.
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where the above given quantities are

Tk, — the first Piola-Kirchhof stress tensor,
Qx — the heat vector,
po — the initial mass dens.ty,
t=¢(x;, xs M) — the internal energy per unit mass,
() — the material derivative,

h — the heat supply per unit mass,
vy — the entropy density

Finally we write the constitutive equations

d de oe 0
¢=Po ; O=— v

37 T e
( ) K Po ()xk,K axk,K ()7] n ae

where 0 is the absolute temperature and

(3-8) b=1(x, x5 0)=c—0,
the free energy.
From (3.7) and (3.6) we obtain

(3.9) Po eh=QK.K+ Po -

In order to write the differential form of the balance law (3.4) in more
compact form it is convienient to inroduce some additional notation. We set

r XK a=K —d_ _ = —(
(3.10) e T w O =O=CO
and
(3.11) Hn (- k) = H s O)

It may be verified that

H, xi, k= 0oV Xk, k= Tk
(3.12)

H, ﬁ.:k= —po.‘i‘k, H, .Ykzo,

and the balance law (3.4) is equivalent to the Euler-Lagrange equations

0
1 2 H, x, ,=0.
(3.13) Y k.

ax
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Then the Noether’s theorem 1 can be applied to our case. To confirm this
claim we choose

LEH, Wi = X CP=e (a1 b=1)
b

(3.14)
X={E: x 0), Y=(x; 0), L=l 2 0,

The corresponding conservation law (2.14) now reads

(.15) %(Hmm X, P} H, B(y—8; pag) =0,

3

where L is given by (3.14,). We note that (2.15) and (2.23) hold and we
will use them hereafter but without indeces @ and b, i.e.

(a) ri=Bi—x, g%  q=Y—0, gag.

Before proceeding further we give the integral form of this conservation
law using the divergence theorem, i.e.

% [(Ha4+H, o) f(HaK+H, %, gre) NpdS+
i’ ./

S

(3.16)
fH,e(Y—e, BOCB)dV=O,
¥

where V is the region in the space occupied by the body in the reference state,
S the boundary of ¥V and Ng is the unit outward normal on S.

Our next task is to show that they do in fact exist mapping family (2.1)
with respect to which _% is infinitesimally invariant at X=(&, x, 0).

4, Completness for arbitrary objective and isotropic

If we impose the condition that the form of the free energy must satisfy
material objectivity but otherwise remains arbitrary, we must have

0
(4]) Crim a—kp_xm.l(:o’

X, K
where e, is the usual permutation symbol. Moreover, if the material is
initially isotropic, we have

(4.2) exim—— %k, m=0.
Xk, L

Then we can formulate the following theorem 2.
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Suppose the thermoelastic material under consideration is 1sétropic and
satisfies material objectivity. Let _% be the Lagrangian

4.3) Z(Y)=[H(Z)dE,
R

where R it a bounded regular region in E,, H, Z, Y are given by (3.14)
and ¢ satisfies (4.1) and (4.2). Then _# (Y) is infinitesimally invariant at Y
under transformation (2.1) for every x,=x,(E,) satisfying the equations of
motion (3.13) iff

ax=exrpXp Ay +Cx
,=C,

(4.4)
Br = €xm X1 Qp+a;

vy =0

where a,, C,, C, Q, and A, are arbitrary real constants.

Proof of theorem 2: To prove sufficiency we may directly verify the
infinitesimal invariance of (3.4) under (2.4) and (4.4).

We now proceed to establish the nessecity of the Theorem 2. To this
end we note that if there exist some one-parametar family of transformations
(2.1) under which % in (3.4) is infinitesimally invariant then (3.15) holds
for any H(Z) given by (3.11) and any ¢ in (3.8) satisfying (4.1) and (4.2).
Using (3.13) in (3.15) we obtain

(4.5) H, o, +H, X org, o+ H,o(y—0,g0p)+ Ha, ,=0.
If we substitute (a), (3.10) and (3.11) into (4.5) we find that

¢, Xk, k B, x = Xk, 8%8, k) — %k (Br, ¢ — X, p%s, o) + ¥, 07
(4.6)

|
+ Jag, By Kt ag, a=0.

Now the values of {§, x, g are restricted by equations (4.1) and (4.2). Utilizing
Lagrange’s method of multipliers, we set

b, X, kB, k— X, 8RB, &k — Ti €t Xi, ) — Aj €rkr Xk, 1) +
(4.7)

. L . o
+ U, 0y + Yap, g — Xk (Bre, 4 — Xi, p%g, 4) — 5 Hn ag, g = 0.

where €2, and Ay are the unknown Lagrange multipliers. Since the function
¥ (x;; @) in (4.7) 1s now arbitrary, the values of ¢ and ¢, x, , at a point
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may be chosen independently of the values of higher derivatives of ¢. Thus,
(4.7) is satisfied for arbitrary ¢, ¢,, and ¢, x, g if

Br. k= Xk, 8%8, k — Qj Cik1 X1, Kk — AJ €KL Xk, L= 0,

v=0,

(4.8)
aﬁ. 8= 0,

X (Bre, s — Xi> 823, ) = 0.
We write explicitly

aﬂ.*r‘_‘aﬂ.7+“3.kxk.?+aﬁ.99’7’
4.9)
Bﬁ-'r=BB.7+BB.kxk.T+BS.BBs ¥

At any point of R the values of (x;, X, ., 0) may be chosen arbitrary and
independently of the values of higher derivatives of &,. Then from (4.9,) and
(4.8,), we conclude that
(4.10) a3‘5=0; aB_k=0 MB,3=0,
and (4.8, ,) may be written as

Buix + Bre, 121, k+ Bre, 005 x — Xie, L %L, x — Xic Xyyx =
(4.11) < e xy, .~ Ay ek X, =0,

% (Brra+ B, 1 %1+ Br, 00 =X, g g, 4 — X %4, 4) =0

since ag and B, are independent of x, , and 0, , it follows that the linear and
quadratic parts in x; , 0,, of (4.11) must vanish separately. This leads to

Bk!m= 0’ Bk.e= 0’

(4.12)
dgre=0; gk =0;
and
Be, 1= €5) X1, k — (g, g — Ny eyrx) Xk, =0,
(413)

% % By, 1— skl%. =0

From (4.10) and (4.12) we deduced that «, is a function of Xz and B, is a
function of x.

Using (3.3) 1n (4.13) we obtain

Ba, 1 — Q; ei— (0, x— AJ €skr) Xk, L Xk, 1=0,
(4.14)
ar.x—Nsee—Br.1— 2 €)X, 1 X k=0,
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form which follows that

Bie.n— (@, x— Ayeyrx) X, (1%4), =0,

(4.15)
o, )~ (Br,1— Qj ) X1, (xX1),:1=0.
Thus
(4.16) Buw.n=0 . x="0,
or
Br = €xim X1dp + 0
(4.17)

og=€xrp X Bp+ Cg

where a,, B,, Cy and d, are arbitrary real constants.
From (4.16) and (4.13,) we obtain

(4.18) (X4'r4=0,
and from this and (4.10) and (4.12) we conclude that
(4.19) a4=B4s

where B, is arbitrary real constant. Q.E.D.
Then the infinitesimal part of the transformations (2.1) are

;k = Xk + (ekim X dm o+ ak) ’q
(4.20) :X-’k=Xk+(eKLMXL Dy +Cy)m
t=t +B,7

However, this is all that is required for the corresponding conservation laws.

Lie [12] introduced the very convenient symbol Uf, being called the ge-
nerator of group, for the coefficients of 0 (5.1), i.e.

(4.21) Uf=B; ﬂ
0 Xy

Since Uf can be written when the infinitesimal transformation of a group is
known, and conversely, (5.2) is known when Uf is given, Uf is said to repre-
sent B,. Then the finite transformation is known. In particular the finite
transformation of the groups, whose infinitesimal transformations are given
by (5.1), are

Xy = Gt () X1+ Pic (1)
(4.22) Xx=0kr () X+ Px(n)
t=t1+P(7)

(b) 01 (0) =85 Ok (0)=0; G @im =35 Qxamr Crr=Okm
which represent the full group of orthogonal transformations and a time shift.
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5. The conservation laws

We now proceed to write the integral form of the conservation law (3.16)
wkich correspond to the particular transformations (4.4). By taking all of
the arbitrary constants in (4.4) zero exept one in turn, we obtain the cor-
responding conservation laws. There are‘the following five transformations under
which the functional is infinitesimally invariant:

L a,=00r=a; q=0)
Then we introduce the family of transformations
X=X+ @7
(5.1) t=t,
X, =Xy,

which represents rigid body translation. The corresponding conservation law
(3.16) now reads

(5.2) :;d— fpo.‘"cde—fTKkNKd520,
t

vV S

where we have used (3.12).
II. dm7é0(ak=ck; Bu.:O T=0)
Fi = €kim xldma d= 0

So induced family of transformations

;k = Q1 () x;
(5.3) t=1
Xx= X

represents rigid body rotation, and the corresponding conservation law reads

d
(5.4) W fajklxk (Poi'l)dV=fejkixk TgiNgdS=0
%

S

111. B4?£0(ﬂk=dk=ck=3k=0; 'r=0)

(re=—%B,; 9=-0B,)
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The family of transformations

(5.5) | Xg=Xg
t=t+ B,

represents a shift of time, and the corresponding conservation law may be written as

(5.6) g_f(H—H, :i:kaék)dV—j H, X, g% NgdS= [H,eédV_—_o.
fe
S Vv

v
Upon using (3.7-12) this reads

(5.7) %fpo(s+%ikik)dV—fTgka'ckNKdS—fQKNKdS—[poth=0,
t .
| 4 hY

§ Vv

The three conservation laws, (5.2), (5.4) and (5.7), correspond respectively
to the conservations of linear momentum, angular momentum and energy. They
are the consequence of our requirement that the form of the free energy func-
tion ¢ (x;, x; 0) must satisfy material objectivity but otherwise remains arbitrary
and are easily verified in the usual way from the basic equations (3.4-7).

Thus we have established the basic theorem of the equivalence between
conservation and invariance [16]:

Linear momentum, angular momentum and energy are conserved in a
thermoelastic medium iff the action density _% is invariant under the group
of Euclidean displacements.

IV. Now we consider the case when
ag=Cg(Br=0, «,=0, y=0
re=—X,xCg, g= —0,,Cx

The corresponding family of transformations and the conservation law
are respectively

X = X
(5.8) t=t

d . |
(39) Et- f?oxkxk.de+f [Po(4’__é_xkxk)SKL_Tchk.K:INLdS_
1% S

—f 00 by o, cdV 0.

V
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V. The last case follows from Bg=0. The corresponding family of
transformation is

(5.10) t=t
?K = QKL XL'

Then the conservation law 1eads

d . |
(5.11) eKLM[Efpoxkxk.KXLdV" [[Po(4"_"_2"xkxk)_TKk]XLNKdS_
v s

_ f & ¢,BB,KXLdV}=O.
vV
Now we can conclude:

‘ The conservation laws (5.9) and (5.11) hold when the material is initially
1sotropic, but does not necessarily satisfy material objectivity.
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OB 3AKOHAX COXPAHEHHUA B TEPMOVYIIPYI'OCTHU
E. Apuy
PeszwoMe

B pa6Gote pacMarpuBaercs npmioxeHus Teopemsl HeTepoBoi B HeJlMHeHHOM
TEPMOYNPYrOCTA. DTHM CINocoOOM MoJIyYeHHass CHCTeMa 3aKOHOB COXpaHEHHs
CAMHCTBEHHA B CMBICJIE YTO MMM COOTBETCTBYIOLIME IDYyNibl Ipeobpa3oBaHus

3 Mehanika 5
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KOOPIMHATH M TeMIEpaTyphl OAHO3HAYHO ONpelelEéHHbI. B crclmanbHOM ciyyas
Nojlyyalollas, B OTCYCTBHE TEMIEPATYpPHl, 3aKOHBI COXPAHEHHMSI He JIMHEHHMi
TEOPHH YIPYrOCTH.

ZAKONI ODRZANJA U TERMOELASTICNOSTI
Jova Jarié
Rezime

U nedavno objavljenom radu Knowles i Sternberg [6] pokazuju da
J-integral ili zakon konzervacije Rice, kao i njegov trodimenzioni analogon,
sledi iz Neterove teoreme [7].

U istom radu je pokazano da postoje jo§ dva zakona konzervacija. Po-
kazuje se da su ovako dobijeni zakoni konzervacije jedini kada je u pitanju
linearna, izotropna homogena elastostatika.

Kasnije je pokazano da analogni zakoni postoje i za konagne deformacije
homogenih elasti¢nih materijala ali njihova jedinstvenost, u okviru Neterove
teoreme, nije dokazana. U radu [8] je pokazano da zakoni konzervacije slede
iz simetriCnih svojstava koje zadovoljava funkcija energije deformacije.

Namera ovog rada je da prosiri ispitivanje zakona konzervacija na domen
termoelastinosti i pokaZe kako oni slede primenom Netero ih teorema. Ove
teoreme su, po naSem misljenju od velikog znadaja jer utvrduju egzistenciju i
prirodu nekih zakona konzervacija koji slede na osnovu zahteva invarijantnosti.
Dalje, dokazujemo da kompletnost zakona konzervacija, koristeéi Neterovu
teoremu, nelinearnoj termoelastiCnosti nije nifta sloZenija od analognog pro-
blema u linearnoj teoriji.
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