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ON A DIFFERENTIAL PRINCIPLE OF HIGHER ORDER
FOR NON-HOLONOMIC MECHANICAL SYSTEMS

V. Covié
(Presented February 23, 1977)

1. In the case where the mechanical system is acted upon by ideal
non-holomic constraints of the most general form, a function is formed by
applying the Gauss function of constraint, the variation of this function, in
virtue of the principle of m-th order, being equal to zero. Equations of motion
of the mechanical system under considerat.on were also obtained.

2. The differential principle of the m-th order*
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where Z iz Gauss’s function of constraint.

* The indices take the following values:

Tk =1 s i w=1,...,p: v,e=p+1,...,p+l=n.
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As shown in (2), we have
1
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and, after introducing the Appell function of acceleration
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the expression (1) can be rewritten in the well known form of
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Provided the expressions for the Appell function and the kinetic energy

of the system involved are written in the form of
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the expression (1) obtains its well known (3)
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3. Let the system be subject to constraints of the most general form

({11, 35, [4D
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which can be rewritten in the following way, too,
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By taking into consideration the last equation, (1) can be given the
form of
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where from there follow the equations of motion of the system under consi-
deration:
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then it is possible to write
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so that it is quite obvious that
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then the differential principle of the m-the order can be written in the form of
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out of which there follow the equations of motion of the system involved,
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or (see, also [5])
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For m=2, the equations (7) are transformed into so-called Appell’s
equations. It is obvious that the Appell equations are a direct consequence of
the Gauss principle. In fact, Appell divided the Gauss function of constraint
into three parts: the part which represented the quadratic form of variables
Zf' was designated by S; the part which is the linear form of the variables 2'
provides the generalized force; and, finally, the third part was discarded since
it is not subject to variations.

From the preceding expostulations, we can see that the Gauss function
of constraint (z) is a unique function in Analytical Mechanics with reference
to the shortness of forms in which differential principles and equations of
the mechanical systems are expressed.

4. In [4], the equations of motion of the mechanical system under consi-
deration, that was subject to constraints '

¢§°=a&(q‘, Fed 5 % 2) g'["+a°(q‘, s és 5 g% 1)

were derived in the following way. The functions
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were first introduced, and then, from the condition of extremum of the
function Ky, the differential equations of motion
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were formed.
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These equations are exact, but they are derived by wrong considerations.
This is obvious if one bears in mind that
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where in the expression for K, terms which were not important for the
expressions (9), were omitted. By considering (8) and

Ls=gks ‘.;k+ F-Y'kf qk qr_ Q.r

it is quite obvious that Kj, has its extremum only for m=2, and this is a
well known fact. When m>2, the equations (8) are not proved by a correct
method.
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SUR LE PRINCIPE DIFFERENTIEL D’ORDRE SUPERIEUR
DES SYSTEMES NON-HOLONOMES

Vukman Covié

Résumé

On formule un principe d’ordre supérieur dont I’essentiel est que la va-
riation de la fonction, formée & I'aide de la fonction de Gauss, est égal a zéro.
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O NUO®EPEHLMIAJIHOM TTPUHLMUITY BUIUIETA PEJIA 3A
HEXOJIOHOMHE MEXAHUWYKE CUCTEME

Byxman Yosuh
PeszumMe

V paay ce pa3MaTpa MeXaHHYKH CHCTEM NOABPTHYT JIejCTBY HOEaJTHHX
HEXOJIOHOMHHX Be3a.

TMonasu ce oj NPHHLMNA M-Tora pena Koju ce, kopucrehn I'aycoBy (yHKIHjY
HajMame TpuHyze, Tpanchopmuie Ha odymk (1). Mdame ce noka3yje aa cy ca (1)
eKBHBAJICHTHH TO3HaTH odymim (3) u (4).

V ciydajy aa je MeXaHWYKH CHCTEM TOJBPTHYT A€JCTBY MICAJNHHX HEX0JIO-
HOMHMX Be3a BHlllera pena, mudepenumjansy npuHuun (1) Moxe na ce Hanuiie
y dopmu (5), u3 koje je ouuriemHo na Iaycosa (byHkuMja HajMame NpPUHYIE
oMoryhaBa 1a ce jeAHauuHe KpeTama pa3MaTpPaHOT HEXOJOHOMHOI CHCTEMa
u3pale y HajkoHIeH30BaHHMjeM 00Jmky (6).

Ha xpajy IaT je OCBpT Ha pelllele OBOT IpodijeMa W pajioBUMa [3] = [4].
IMoka3aHo je Ja Ce y THM pajaoBuMa CaJpe H3BeCHe HENMPEUHM3HOCTH.
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