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ON CONSERVATION LAWS IN ELASTODYNAMICS
J. Jarié, M. Vukobrat

1. Introduction

In a paper devoted to the analysis of stress concentrations Rice [1]
introduced a path-independent integral* arising from the field equations of
elastostatics and demonstrated its utility in connection with the asymptotic
analysis of singular stress field. The physical interpretation of this integral is
based on the energetics of quasi-static crack extension

Apart from its inherent theoretical interest, the conservation law made
explicit in [1] is of practical importance in connection with the direct asymp-
totic analysis of geometrically induced singular stress concentrations, such as
those occasioned by cracks and notches. The fact that this integral follows
from the equilibrium equations, the stress-displacement relations, and the de-
finition of strain-energy density W is easily demonstrated by means of the
divergence theorsm. For two dimensions, such a proof was given by Rice [1];
it amounts to a verification and, as such, gives no indication of why it holds
or whether other path-independent integrals exist. '

In a recent paper by Knowles and Sternberg [2] it was shown that the
conservation law

(1.1) [Wn—6, U, n)ds=0

z

and its two-dimensional counterpart follow an application of Noether’s theo-
rem on invariant variational principles to the principle of minimum potential
energy in elastostatics. This procedure, moreover, yields two additional conser-
vation laws.

Noether’s theorem on variational principles invariant under a group of
infinitesimal transformations was used by Fletcher [3] to obtain a class of
conservation laws associated with linear elastodynamics. These laws represent
dynamical generalisations of path-independent integrals in elastostatics. It is
shown that the conservation laws obtained are the only ones obtainable by
Noether’s theorem from invariance under a reasonably general group of infi-
nitesimal transformations. In all the papers above the way of proving and
deriving of results is long, complicated and unsystematic.

The aim of this paper is to complete the results of so far derived theo-
ries and to systematise the way of derivation. The paper starts with the point
that the corresponding coordinate and vector transformations do not depend
on material properties of continua. Starting with this requirement, which is
quite justified because conservation laws of any kind are valid for allowable
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elastodynamics processes of all continua, it is very easy and simple to come
to corresponding groups of transformations which are in complete accordance
with so far obtained results.

2. Linear Elastodynamics and Noether’s Theorem

For the sake of a better survey and understanding of this paper in this
Section we summarized the pertinent field equations and constitutive relations
governing the theory to be considered.")

Let (x,, x,, x;) be rectangular Cartesian coordinates, and let D be the
closed, bounded, regular region in three-dimensional space E; occupied by a
homogeneous elastic solid in its undeformed state. A particle of the solid in
a motion, located at x in the undeformed configuration, is found at time ¢
at the point with position vector y(x, ¢). Then the corresponding displacement
vector field u is defined by:

2.1} U, t)=y(x, 1)—X xcD 1=0.
The components of the infinitesimal strain tensor field vy and stress ten-

sor ¢ are given by

1
(2.2) Y,j=~2—(U,,,+Uj,,-) on D x [0, o]

(2 3) G"=Cijlek[’ on D x [0: OO]

q

where the components Cj of the elasticity tensor satisfy the symmetry re-
quirements

(2.4) Ciii= Cjixe= Chyy-
In the absence of body forces, the equations of the motion become?
(2.5) Glj,j:PUi" on D x [0, 00]

where p is the mass density-assumed constant, o the components of the Piola-
-Kirchhoff stress tensor and

0> U;
2.6 U.(x, )=—2L(x, 1).
(2.6) (6, =" (% )
Using (2.2), (2.3) and (2.4), (2.5) gives the following displacement equations
of motion
(27) . CljklUk,ij:pUi' on DX[O, 00]
If we set
a .
x=t ()= o

1) In the paper we strictly used the subscripts and symbols wich wdre used in papers
[2] and [3].
2) summation over repeated subscripts is implied
Latin subscripts have the range 1, 2, 3 unless otherwise stated.

6*
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The equations of motion can now be written in the more compact fourdimen-
sional notation as follows¥:
(2.8) Ciarp Uk,ap=0,
where, by definition
(2.9 Ciarp=3—p08u% if a=B=0
0 if «a=0£50 or a7£0B=0
and
Ui.a= l-ji’j ff ks
U,; lf D.'.=0.
It is shown in [3] that the formal Euler-Lagrange differential equations asso-
ciated with the functional

T

(2.10) ZU= [[LEU, Uydxar,

0D
where the Lagrangian density L is given by

1
(2.11) L(Uf:a)zzciakﬁui.a Uk,

are precisely the displacement equations of motion (2.8).
Lagrangian density L can be written in the form

: I w
(2.12) L(VU, U):I‘(D()—-i—pUU
where elastic potential F(_Y) is defined by

1
(2.13) P('[):Z—ijk:Uf.jUk,:-

For an isot opic material

(2.14) Ciipr =238, + 1 (85 81+ 8, 8y)

ij

where the constants A and p are the Lame’s moduli, so that (2.13) becomes
I :
(2.15) P = va Y+ vy vy

We now proceed to cite the restricted version of Noether’s theorem which
has been applied to elastodynamics as well as elastostatics in [2] and [3].

Let £,, £,, ..., &, be rectangular Cartesian coordinates in n-dimensional
Euclidean space E”, and let R be a bounded, closed, regular region in E”. Let

3) Greek subscripts have the range 0, 1, 2, 3.
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W=(w, w,, ..., w,) be an arbitrary vector ficld of m components defined
on‘R. Suppose further that w is twice continuously differentiable, and define
a functional on the class of such vector fields w by the formula

(2.16) T wl=[FEwE VwE)el
R

\h_/here F is a given real valued scalar function defined and infinitely differen-
tiable for all values of its arguments.

Given. the point £& R and a vector field w —C?(R), define a family of
transformations (&, w(%))-—(&*, w*(E*)) by the formula

(2.17a) B (2 w(E), Vw(D)
(2.17b) we(E9 =0 E wE), Vw ()

where @, , are respectively, n- and m-dimensional vector-valued functions of

their arguments. For ¢—0 the transformations are required to reduce to the
identity {*=E, w* (L¥)=w ().

The functional ¥ in (2.16) is said to be invariant at w under the trans-
formation (2.17) if

Q@.18) [ FE wHE), VEwrE)der = [ FE wE), VwE)dE
R* R

for all sufficiently small values of |e|. If, for a given w,

=

(2.19) {“' fF(a*, wE (%), V* w*(i*))di*] 0
g - e=0
R*

then .7 is said to be infinitesimally invariant at w. Note that if 7 is in-
varient at w, then ,% is infinitesimally invariant at w.

Theorem 1. Let R be a domain in E, and suppose the vector field w
satisfies the Euler-Lagrange equations

0
(2.20) Fiwi (X) — — [Fiwia (X)] =0
0g
where X stands for
(2:21) X=( w(E), VwE), E€R
Then % in (2.16) is infinitesimally invariant at w under the family of

transformations (2.17) for every bounded, regular subregion R of R if and
only if w also satisfies

(2.22) | a‘;— {F w1, « (0 §,(X) + F(X)- 9 (X)} = 0

o
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where

0
Do (x) =T (Da: (X! €)| e=0
oe

(2.23) 500 =W, (X; 9o
de

G, (X) = §; (X) = w;, o (8) 9 (X).

If R is a bounded regular subregion of R, (2.22) and the divergence
theorem immediately yields

(2.24) R s (X)- 4 (X) + F (X) - 9 (X)] 1 () ds = 0

oR

where OR is the boundary of R, and n, is the &,-component of the unit
outward normal on OR. In general we shall speak of (2.24) — or is equivalent
differential form (2.22) — as a conservation law."

In the application of Noether’s theorem to be given in the following
section, the vector field w will always be the displacement field u so that
m—4. In the elastodynamic case &,=x; for i=1,2,3 £,=1, and n=4, and the
four-dimensional region R in (2.16) is taken to be D x [0, T].

3. Transformations under which the Lagrangian functional
is infinitesimal invariant

On the basis of here stated Noether’s theorem corresponding conscrvation
laws were given in [2] and [3]. The main problem in obtaining these conservation
laws was connected with getting corresponding coordinate and vector trans-
formations (2.17) under which function . is infitesimally invariant.

On the basis of the same theorem one can conclude that the existence
of a vector field w which satisfies (2.20) and infitesimal invariance of %
under (2.17) makes w satisfy (2.22). These relations are the only data from
which the needed transformations can be found. However, from (2.22) and
(2.23) one can see that the transformations (2.17) can be defined only to the
linear term of =. By means of a Taylor series expansion we can express (2.17)
as follows: :

DEwE), Vw(E); e)=E+epE w(&), VWE)+0()
as £—>0
‘}”(5, w (&), YW(E); e)=w(&)+ E':IJ &, w (%), YW(E_)H'O(E)
However, the quantities defined with (2.23) are the only ones we need for the

corresponding conservation laws.

In this section we shall pay attention to linear elastodynamic problems
of isotropic bodies. In this case we can prove the following:

4) The proof of this theorem is given in [4].
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Theorem 2. Suppose F is the function defined by
3.1) FE wE), VWE)=L(V, U)

where L(V{u, u) is given by (2.11) or (2.12), and let F be the admissible
Junctional for D generated by F. Suppose, further, ¥ is infinitesimally invariant
at u with respect to the transformations

(3.2) X =®E, wWE; )W EN=Y(E Ww(E)s ) E={"?

for every elastodynamic state on D corresponding to the elasticity isotropic tensor
Ciju» given by (2.14).

Then ¢, and ¢, must obey
@i (E.) =M X ik bj X, -+ Cr'
i) @ (B)=vt+G,
i@ =vU;+eubUpteyax +d,

where v, C,, b,, a;, and d, are constant arbitrary real constants.

The proof of this Theorem is given in [3] in the way which is similar
to the proof of Theorem 3.2. in [2]. The procedure of proving itself shows
the independence of transformations on material constants. However, that
demand, in the above mentioned papers, is not explicitly emphasized nor used,
which affected the procedure of proving. It is important to note that beside
the similarity of proving Theorem 3.2 in [2] and Theorem 2. in [3] there is
also an essential difference. In our opinion the proof of theorem 2. in [3] is
more correct from the mathematical and physical point of view.

Proof of Theorem 2. If we take that w=u and use (3.1) in (2.20)
we get

0
(3.4) 'dy' LU;'_»)«_(UJ::B)‘:CI-GI(B UA‘QG:O.
Cu

It means that Euler equations (2.20) reduce to the Cauchy equations of motion
which are satisf.ed for displacement u which defines linear elastodynamic
states of bodies. According to the Theorem 2. %, 1. e. L, is infitesimally
invariant for such displacement u with respect to @ and ¢ of (3.2). Then

(2.22) is valid on the basis of Theorem 1. This system of equations can be
written as

' 0
(3:5) 5 L2 (U0 4 () + L (U}, )92 ()] = 0.
On the basis of (3.4) and (2.23) as well as the expression
(3.6) q;i;vt =0+ i,u, Upa— U v Py — Uiy Py, a= U,y @y, U Up
(3.7) Pria=Py,at+ Pr,Un Up,a

(3.8) Ly, = Ciaxp Us,p
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where ;¢ denote the total derivative on £,, and »,* denote the partial deri-
vative on &,, we can write (3.5) in the form

1 .
CiarsUiaVis+Ciarp U« ‘2_Uk,B‘PY,Y+LIJk.UnUn,B_Uk.p‘Po.B]+
3.9 i

[ 1
+Ciaks Ui CPY-p(z Uip U,y = Uiy Up B)]—O-
L

Demanding this expression to be valid without any limitations on U, ,
we get three sets of equality

(3-10) CiakBU;‘,aq’k.Bzo
|
(3.11) Ciarsp Uf,a[? Uk.B(Pv.v‘H]Jk.Un Uns— Ug, o %o, B]=0
|
(3.12) Ca‘akﬁ Ui,cxli‘PY, Up (? Uk. B UP.Y_ Uk,‘( UD,B)]=0

which represent the linear, square and cubic term of the set of equations (3.9)
upon U, ,. We shall further discuss each of these systems separately.

i. Linear Terms

Differentiating (3.10) with respect to U, , we get

Ciorps¥is=0.

Using (2.9a) this system can be written in the form

Ciort Y, 1+ Cioro Vi o=0
which splits into two systems of equations which are
for a=j Cijt Y4, 1="0,
for «=0 Cioro Ve, s=0;

With respect to (2.9) these systems of equations can be written as

Ay et 2p (Y +4;,)=0
—p¥i,0=0.

Since the needed transformations (3.2) do not depend on the properties of
elastic bodies, i.e. on material constants A and p, from the above equations
follows

(3.13) $ij+¥,i=0
(3.14) $ie, k=0
(3.15) Yi,0="0.

It is obvions that (3.14) is contained in (3.13).
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1. Cubic terms

The systems (3.12) can be written in the form

Ca‘rxk B "Py.Us (8{51 SYU el 2 871 Bﬁrr) Ui,a Uk,": Us.c = 0

which splits into two systems because of (2.9):

(3.16) Ciint Py, us Br110v6 — 284 815) U ; Uy Uy 6 =0

G317 Py, us Bpr Ovo — 28yc 896) Uy, g Uy, s Us, 0 = 0.

The equations (3.17), can be written in the form

(3.18) ~ @0, us Uio Uk, o Usso+ 91, us Ui o (U, o Us, j— 2 U, j Uy, o) = 0
from which follows that

(3.19) . s = 0-

Then (3.18) gives
@5 us Ui g Uy, o Us.j— 2 Uy, j Uy, 0) = 0.
If we differentiate this equation with respect to U, , we get
@5, s Utyo (Uk, 0850850 — 2 8 85g U.,, ) = 0.
Multiplying this equation with §,,3;, we get
=3¢, vk UioUr,0=0

from which follows that

(3.20) ¢, vk = 0-
The conditions (3.19) and (3.20) can be written in the compact form
(3.21) oy, v =0.

From this expression it follows tha (3.16) is identically satisfied.

iii. Quadratic Terms

According to (2.9) and the assumption that the transformations do not depend
on material properties, the equation (3.12) can be split into two equations

(3.22) C}jk! Ui (9v,y U1+ 2 ‘Pk, unUn,1— 295, 1 Uy, J=0
(3:23) Uk, o (Py. v Ukot 2 LI/k. tin Unii — 298 Up,i= 29,0 Uk,0)= 0

The equation‘s (3.23) must be satisfied independently with respect to the
quadratic and linear terms of U, ,, i.e.

(3:24) Uk, o @y, Uoo+ 24k, un Uno— 2 90,0 Uk,0) =0
(3.25) 2¢i o Uk, 1 Uk,o=0.

From (3.25) it follows that

(3.26) 9. 0=0.



On conservation laws in elastodynamics 91

Differentiating (3.24) with respect to U; , one gets

[Py, v — 20, 0) O + (), s + Yk, u)] Ui, o =0
from which follows that

1
(3.27) bo.on= = @r.y = 2%0.0) 8.

It still remains to discuss the equation (3.22). This equation can be written in
the following form

ijk! Ul.j(‘?‘r.'r Up, 1 +2 4’:(. tn Unt—= 29 U, o)) — 2 ijki Ui.j P, 1 Uk, 0= 0.

Each part of it must be equal to zero because of U, , in the second member’
1.e.

(3273) C:‘jkt’ U,;,-(pr_y Uk,l'l' 2 L]"k, Un Un,I‘ 2 Ll’m.l’ Uk.m)= 0
(3.27b) Cimt®90,1Ui,j Uy, 0=0.

Because of the arbitrarity and independence of U;; and U, ,, from
(3.27b) follows that

Cjkt 9o,1=0-
With the help of (2.14) it immediately follows that
(3.27¢) o, 1= 0.

Using (2.14) the equation (3.27a) splits into two parts; one along the coefficient
», the other along w, which must be independently satisfied because of the
introduced assumption of independence of transformations on these coefficients i.e.

(3.28) Prv UiiUij+ 200 0k Ui n Uii = 29,0 Up, n Ui, i = 0 along A
(3.29) i3+ 3ud ) Ui iloyv Ui+ 2%, 0aUn 1 =29, Uy, ,]=0  along p.
Differentiating (3.28) with respect to U, , we get
@r. v Ok + Y vk = P ) Oy Usi + iy~ 01, ) S Uj,i= 0

from which follows that
(3.30) Py, v B+ Y, Uk — P ) O+ (Y, 0 — 91, ) B, 1 = 0.
If this system of equations is multiplied with &, we get
(3.31) 3 (i, uj— i)+ (be,uk— Preok + 3 Py, 4) 8=0.

Contracting the indeces i and j one gets

3
q”k.Uk —Pu k= — ’2 Ty

1) With ( ) we denote the symmetric part of the system on the indices in the brackets.
The antisymmetric part of the system on the indices is denoted with.
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If we substitute this in (3.31) we obtain

I
(3.32) ¢, u— = = ) Py, v 8-
From (3.32), with the help of (3.27), we obtain
1
(3.33) Uin =y Pk = Po.0 %

It remains to see what one gets from the expression along ., i.e. from (3.29).
Differentiating this equality with respect to U,, and then rearranging so
obtained expression, one gets

Py (T, o F Ty )+, i 07 W, 0 Uy + W iUt Ug)
+(Pn.qUﬂ,n_cpn.pUq.::“@q.n(un,p+Up.n)=0'
If this expression is differentiated with respect to U, , and the obtained
expression is arranged, one obtains
@v.v Sipt ¥y vp = ©1.0) Big + Wa, vi = Pa. ) 85+ 2 Yo, Uiy Bja +
+[ey,y8jg— 29, 9] 8;,=0
which is identically satisfied because of (3.30), (3.27) and (3.33). According

to this, one can conclude that from (3.29) we do not get any new conditions
which the functions ¢ and ¢ should satisfy. Summarizing all the conditions

which must satisfy the functions ¢ and ¢ we can conclude the following:

Py =y (X, 1)
or, even more correctly,
@;=9; (¥)
Py =P, ()

which follows from (3.21), (3.26) and (3.27c¢).

Now, we differentiate (3.32) with respect to x, and use (3.15) and (3.26).
Then, we get

Py, 50 = 0.
This equation has the form
Po.00 1+ Pj.jo=0

from which it follows that
Po.00="0 because of (3.26).

From this one gets
(3.34) Gy =" t4-a,

where v and @ are constants.
With the help of (3.34) it is easy to show that (3.33) because

(3.35) P,y = VOyj-
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Then the symmetrical part of the equation (3.32) can be written in the form
(3.36) b v = — YOk

where we have used the relations

@, i=3®, =3V
and

(3.37) Py, y=Piit Po,0=4V
which follows from (3.33).
If (3.35) is differentiated with respect to x, we get

@, kit Prji=0-
By cyclic permutation of these indices we get two additional relations

Pr, i+ Pixi=0
@ ik T, =0-

By adding these two systems and substracting the so obtained sum from the
preceding one, we get

@i, k= 0.
Integrating this expression, one gets

¢;,j=Diyy= Dy + Dyijy

where D; is a constant, and D; and Dy; are its symmetric and skew-sym-
metric part respectively. With the help of (3.35) this expression can be written
in the form :

(3.38) ;.= V8 + Ejj,

where E;= Dy; is skew-symmetric.
By integration of this expression we finally have

(3.39) Q;=VvX;+ E; x;+ E,

i
which determines the function ¢,. It remains to determine the functions {¢;.

From (3.15) it follows that ¢, does not depend on x,. If (3.13) is
differentiated with respect to x, we have

Gy e+ $p,0=0.
By the procedure which is entirely analogous to the previous, one gets
(3.40) $;=Cy(U) X;+ D; (V).

From (3.40) one can see at once that

(3.41) thj"—'Cu(U).
If (3.37) and (3.38) are used in (3.32) we get
(3.42) $p, vy= E;—v3.
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Differentiating (3.42) with respect to x, we obtain

(3.43) 4’:‘. Ujk = 4’i.kUj: 0.
Differentiating (3.41) with respect to U, we get
(3.44) ‘l’j.;u,& = Cij, uk =0

where we have used (3.43). From this it follows that C,- constant. Taking
this into consideration and differentiating (3.40) with respect to U, and
making this expression equal to (3.42) we obtain

bk =Dy, vk = Ey— v8i,
from which it follows that
D;=E,U;—vU,+F,
where F, is constant.
Replacing this expression in (3.40) we get

(345) 4),'TCUXJ' I'EUUJ-"VU‘-'T‘F';.
Because of the skew-symmetry FE; and Cj; it is possible to write them in
the form
E.=eg, A,
(3.46) =R
C‘;j—?sijk Bk'

Replacing these expressions in (3.39) and (3.45) together with (3.34) we obtain
coriresponding transformations in the form which is completely identical to the
solutions of Fletcher [3], 1.e.

(3.47) o=V X+ € Ay x4 E,

(3.48) Q,=VvI+a

(3.49) bi= —vU+ed, Ut ey By x;+ F
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3AKOHBI COXPAHEHUSA B DJTACTOAMHAMMUMKE
H. Apuy u M. Byxobpam
Peszrome

B cratbe, moab3ysick Tcopemoii HeTepoBoii, ompejesieHbl CEMEUCTBA BEK-
TOPHBIX M KOOPJMHATHBIX NIpeoOpa30oBaHUi KOTOPHM OTBEYaIOT 3aKOHBI COXpa-
HEHHMSI B JIMHEHHOM 3J1aCTOJMHAMHKE.

[IpzanonaraeMcsi 4To IpeoOpa3oBaHUsd HE 3aBUCIAT OT MaTepHsJIbHBIX
Ka4yecTB TelJl. DTHM CHOCOOOM TMOJIyYeHble PE3YJbTATBI B IOJIHOM COTJIaCHM
¢ pesynbratamu Puaedepa [3].

O 3AKOHUMA KOH3EPBALIMJE V EJACTOAMHAMUIN
J. Japuh u M. Bykxo6paiu
Peszume

V pany ce, kopucrehu Hereposy Teopemy, o,upeljyjy damunnje BEKTOPCKUX
M KOOPJMHATHHX Tpancopmanyja KojiMa OArOBapajy 3aKOHH KOH3epBaluje y
JINHEAPHO] €JIaCTOIMHAMHUITH.

[peamocTaBmka ce /a TpaHchopmaliMje He 3aBHCE O/ MaTepH]aJIHHX CBOj-
crBa Tena. Ha Taj HaumH A0OMjeHHM pe3yJiTaTd Cy y MOTHYHO] CarjacHOCTH ca
pesynratom ®Pnevepa [3].



