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MICROPOLAR THEORY OF AN INTERFACE

J. Jari¢, S. Milanovi¢-Lazarevic¢
Abstract

It is well known that surfaces of bodies and interfaces between pairs
of bodies exhibit properties quite different from those associated with their
interiors. The problem of surface phenomena is based, for the most part, on
molecular considerations, because it was thought that such phenomena could
be explained properly only by properties of molecula.

Recently this problem has been considered by Scriven, Moeckel, Gurtin
and Murdoch from the point of view of mechanics of continua. Their model of
interfaces is a classical model of two-dimensional continuum. In this paper
we consider an interface as a two-dimensional micropolar continuum. This
point of view much better corresponds to the physical problem, because the
micropolar theory takes into account the structure of material. We derived
all field equations for interface and bulk material and, at the end, the con-
stitutive equations for an interface.

1. Introduction

Mathematical model of an interface, from the standpoint of mechanics
of continua, is a two-dimensional manifold in a body within which the pa-
rameters, deciding phenomenological properties of body surrounding this
interface, have been defined. In such a case, an interface is a singular sur-
face of a body and, from the general point of view, should not necessarily
be material, i. e. within the process of body motion should not be composed
from the same material points. Also, the material surfaces are two-dimensi-
onal manifolds, their material properties being affected by the corresponding
parameters of surroundings.

The importance of an interface has been known so far, but it has
been generally taken that this problem should be considered from the point
of view of molecular theory. Those considerations have been undertaken from case
to case. However, common basis of these problems could not be found. Mecha-
nics of continua, as a method of studying phenomenological phenomena,
offers this basis for the problems of interface. Each and every of those se-
parate problems is derived by corresponding material properties of interface
and surroundings which, within the mechanics of continua, are derived by
respective constitutive relations.
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Theories in mechanics of continua, relating to certain physical pheno-
mena, have been neglecting influence of interface upon said processes. The
crack theory, for instance, dealing with surface stress, has been overlooking
the influence of surface stress upon the field of deformation within a body.
Hence, certain contraversies between experiment and thcoretical results.

This paper deals with micropolar theory of interface. The reason for
such an approach lies in physical basis of this problems, since we do be-
lieve that an approach like this is the nearest to the molecular theories. It
is well known that micropolar theory is such a theory that takes into con-
sideration structure of material.

2. Geometry of an interface

Since material of an interface possesses properties essentially different
from those of three-dimensional continuum, we shall suppose that an inter-
face could be considered as a two-dimensional continuum. Therefore, we shall
at the first stage, give the geometry of an interface. To achieve this, we
shall use the most general parametrisation avoiding to introduce any specific
restrictions, to make difference from papers [2] and [4], since we believe that
any restrictions in parametrisation also restrict our considerations.

Let x' be rectangular Cartesian coordinates of a point. Then a moving
surface s(7) has the representation

(2.1) s(1): X'=3 (u*, 1), i=1, 2, 3; =1, 2

where u* are surface parameters and ¢ parameter that represent time. By the
relation

(2.2) w*=u*(UT, t); Fely 2

the motion of material particles is detetmined on the surface s(z), where
U' are the convective coordinates.

In each point of surface a unit normal vector v =V (u% t) exists, as
well as tangent vectors x'; «, so that

(2.3) Vj V[: l, xf; a'Vl;:O.
A square of element of length in the surface is given by
(2.4) (dl)? = gy du* du®

where g,3=x'; ,xi g the represents first metric tensor of the surface. This metric
tensor has the inverse g*® such that

(2.5) ' 8 gy =g
where 85 is the Kronecker delta symbol.
The second metrical tensor of the surface b,5 is
(2.6) bus— X3 ag v,
that is,
(2.7 e wn=Uyn s Y —bg X
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and satisfies the following conditions
(2.8) bybi—2 K, b+ K; 85=0;

where K,,=!/,b;, Kg=detbs=>b/g (b=detbys, g=detg,s).

The velocity of displacement of surface point with given parametrisation,
is given by relation

i i
(2.9) g 07 I 7
dt | yr ot !,,a,ur
where
(2.10) pa B | _ow
dt |yr ot |yr

represents the velocity of a point of the surface.
On the other hand, we have

(2.11) _ d_x —Arxiy L+ U,V
ot
where |
(2.12) v,-2%,
ot
is called the velocity of displacement of surface, and
(2.13) Aa:‘;’€ i AT— g .
t

xlex'(c ¢)

Fig. 1

From (2.9) and (2.11) it follows
(2.14) Va+ Ag =% x;;
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where from, taking into account that

8}“ ot

we get through covariant differentiation

» d x ox'; . .
@19 (B = 25 e e,

0
(2.16) ez b ;"“"‘- Tty by
t

If we now differentiate the relation (2.6), and taking into account (2.7)5,
we get

oV _
(2.17) L — (@, P+ DR A) x5
ot
and
2.18 0 bag - A
(2.18) Py '*AYbocB’ Y“bTBAY; a_borYAY; p=Us aB*UanbYa'

The relations (2.16) and (2.18) are also called compatibility conditions.
In this paper, they are of more general form than in [2] and [4], since we
have introduced parametrisation without any restrictions. However, if certain
restrictions, [2], [4] are taken into consideration, all the expressions could be
treated as earlier obtained respective expressions, in which the Truesdell para-
metrisation obtains for A,+ ¥, =0, and Moeckel parametrisation for A4, =0.

3. General balance laws

In thermodynamics continuum, the general balance law for any body is

of the following form

{
(3.1) R YO R A0))

dt
where , ®(Y) and P()) are time dependent measures of thermodynamical
quantities defined in body b(f). The measure ® is the efflux of ¢ through
the boundary of the body, and P is the production of ¢, [2].

To obtain local balance laws we shall utilize results of paper [2], taking
into account that our paper observes the general form of surface parametri-
sation.

Local form of general balance law for those points of body that are
not lying on an interface is as follows

0 g :
LE"{_(qJQk'I'EA): k=D
ot
and local form of general balance law for those points of body that are lying
on an interface is given by the following relation

(3.2)

0'! o
(3.3) -a"s + (W VA E), o+, 4% o—24,U, Ky =
t

=[|Y (U, =& 1~ |E*]1vi +p,
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E, is projection of velocity of surroundings points towards directton vk, =
=y (EX, 1) and {, =1, (u%, t) are the volume and surface density of quantity
W (), p=p(E~ t) and p,—p,(u*, t) are the volume and surface density of

quantity P(WV), and E*= Ek(Ek, t) also E; = E; (u*, t) are the material flux or
specific surface flux of quantity @ (V).
4. Balance laws

On derivation of separate balance laws, for particular physical quantities,
functions §, E¥ and p, as well as ¢, E{ and p; become:

Table 1
L d Ek P
Mass P 0 0
Inertial tensor jk 0 —2 u(km jm
Momentum Ek ¢kl —pfk
xgg‘fﬁlﬁﬁf i X B+ o) — ey X thl—m;! P (s X7 X+ 1)
Energy 1, Eig+oiv)+¢ — Kl E)—mkl v;— gk o (fhEp+Iku,+h)
Entropy ) —qgk/T e h/T
Table II
¥y ¥s ES Ps
Mass Y 0 0
Inertial tensor JKI 0 —2 P“(-j:n Jhm
Momentum Vi — Siox v Fi
rhrlxl:;n;?ttur?]f e X VE+7; —eiji xJ Ska—M;* Y (eijr ¥/ F*+ L))
Energy 1, (ViVi+tiw)+e, | —SiaVi—Micpw,—Qa | Y (FiV;+Lip;+H)
Entropy My —Qx/T, Y H|T,
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Using equations (3.2) and (3.3), and also taking into account values of
respective functions given in those expressions, from Tables I and 1I, we now
obtain:

a) Equations of balance of mass, microinertia, momentum, moment of
momentum, energy, as well as entropy unequality for those points of body
that are not lying on an interface, in the fo'm

89 M1
+ E;m =0;
31 ;
78:]‘:’ -, U(k dym
3t ’
e et e ('-€)=0

m{d chemky ol = pc}i;
pe =M (&, o)+ mloy =gl +ph=0
o1+ (q4/T), e h/T=0,

where ¢ is the specific internal energy, 7 is the specific entropy, T is the
temperature and /4 is the heat source per unit mass. o' is the inertial spin,
Ii is the body couple and ¢ is the heat flux vector. vy, is the skew-symmetric
gyration tensor, r* is the skew-symmetric stress tensor, and m* is the couple
stress tensor.

b) Equations of balance of mass, microinertia, momentum, moment of

momentum, energy, as well as entropy unequality for those point of body that
are lying on an interface, in the form

5 g o & :
oy £)-tle@-811
kl .
Y§{_:[Ip(j“-—]kt)(u"_au)l]
3t
Y%“S,’E—TF:[{P(S"—V‘)(un—Eu)|]+[i’fkf]"k

Y—;hsfjkxj;.aska—Mr‘..z“YL.:[|P (G:—Ti)(un—éu)\]+[|mi"|]°1

Tés—.S”'“(V‘.’qup.,.jx{a)—M"“y.,-,m—Q?q—yH:[lp(s—as)(un—é_u)|]+
+[|l/2P(gi‘“Vi)z(un'—Eu)|]+[1fkl(ii—Vz)l]Uk—I—
+ [ pws (07— 7) (4 — B 1+ [] |10k

Y ”'f'*_(Qa/Ts)’ a+YH/Ts?/[|P(n_ns)(un—gu)|]+qu/Tl]UA

where ¢, is the specific internal surface energy, 7, is the specific surface en-
tropy and T, is the surface temperature. T is the inertial surface spin, F; is



Micropolar theory of an interface 9

the surface force, L; is the surface couple and g5 is the surface heat flux vec-
tor. S'* is the surface stress, M* is the surface gyration tensor, p; is the
surface couple stress and V, is the particle velocity in the surface.

Given expressions show the influence of the surroundings upon the ba-
lance of certain quantities of an interface. It should be underlined that these
equations are valid for surface, irrespective if it is material or not, and as
such are of general character. When specific kind of material is concerned,
constitutive equations characterizing properties of material surface, must satisfy
these equations. In this case, entropy represents criterion of thermodynami-
cally admissible processes on an interface.

In special cases, when EF =il — £, in other words when diffusion does
not exist, balance equations are 9|mp1|f1ed and influence of surroundings upon
an interface is essentialy changed. If the tangent velocity components of the
surroundings points are equal with tangent velocity components of an interface
points then the velocities of an interface points and surroundings points are
also equal, and the material surface is moving as integral part of the surroun-
dings. The influences of the surroundings are, in that case, the least. If there
are no heat effects either, an interface could be observed independently from
the surroundings, and that is a well known problem of shells and plates. Then,
from the thermodynamical point of view, an interface is considered as an
insulated system.

5. Constitutive equations

We suppose that an interface is elastic. In that case the specific internal
surface energy ¢, is a function of the form

(5.1) e, =€, (M As L Mot As N

and, the free surface energy function ¢, has the following form
(5.2) CPS=(P3(X:-A5 is [J',‘;As T35 Ts;A)

since,

(53) c?s:ss'—Tsns

Substituting (5.2) and (5.3) into (4.2); and (4.2),, we obtain
Yps+Y Ty 0y — S (Vi ot X )M %y o =
~[el@—o)+T =TI W= E)1+|"0 G =V (u,— )1+
(54)  +[[HE=V)| 1ol 1+ (o' =) (uu— E) |1+ [T vy
Y @+ T+ 8% (Vi o+ oy Xlo) + Mi% o — Q% (log T, o>
— [ E =V +mH (o — ) + g (1 + T,/T) |1 vy,

where ¢ is the free energy function for bulk materials.
As we have seen, [5],

‘j kK
= —I/zsukP-jk: —1/2 Cijk X -k -
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so that
(55) Qs = Qs (-\.;l.Ao x’-(Ka x’fK: A, Ts! T,;A)-
With respect to (5.2), (5.4), and (5.4),, we get
0 @,
== e ;
0T,
. 0o, &
8 iy s u; A
C)X,'-A
(5.6) ’
. L, 0, &
Mix= — yelk k(PA U, A Ljk
0'/_-1\’;_&
0,
Py _0,
C)Ts;_\
and the condition of the form
a K 0o, .
(3.7) S; Xi-kkxfca*T ' cfl’*Mm]/z Cijk Xffzo-
()X-K

Relations (5.6) are the non-linear constitutive relations for an non-isotropic
micropolar elastic interface.

If we introduce following measures of deformation

(5.8) BKAZX{A ks Lkra=x X[-IA;A
we obtain
(59) ‘Ps:%(BKAs PKLA! Ts)s
and the non-linear constitutive relations (5.6) take the form
. 0 ;
Sie—y — 0 o gl
LT
' ijk 0 ¢ o
(5 10) Miv= —yei 5y sty ufa
oy, a
0 ¢
Ns= __CP_'
i B 8

The condition (5.7) is satisfied identically.
The constitutive relations for bulk materials are already derived, [5], [6].
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MUKPOIIOJISIPHASI TEOPUSA MEXIAYITOBEPXHOCTEN
E. Spuu, C. Munanosuu-Jlazapesuy
Peszome

B pabote paccmaTpuBaercs ynpyroe moBeieHHe MaTepHATIOHOI Mex1y-
TIOBEPXHOCTH C TOYKM 3PEHHs MHKDOTOJAPHOH MeXaHHKE CHPOIIHOH Cpebl.
Ilpu 3TOM moOJIyyaroTcsi ypaBHEHHS COXPAHEHHS MAcChI, MUKPOUHEPIHH, KOJIHU-
HECTBA  JIBHXKCHUsS, MOMEHTA KOJIMYECTBA [IBHXKEHHS, JHEPrHe, BTOPOH 3aKOH
TEPMOJMHAMHKH O OMNpe/easfolliie ypaBHEHHS.

MUWKPOITIOJIAPHA TEOPUJA MEBVIIOBPIIU
J. Japuh, C. Munanoeuh-Jlazapesuh
Peszume

VY pany ce pasmarpa emacTHYHA MaTepHjajaHa MehymoBpu ca CTaHOBMINTA
MHKpPOIIOJIADHE MeXaHHWKE KOHTMHyyma. M3Boje ce jeAHAYMHE MOJba M KOHCTH-
TyTUBHe penauuje. [luckyTyje ce yTnuaj okosnmee Ha MehymoBpiu u rnocMartpa
ChenMjajad cny4aj.

J. Japuh, C. Munauosuh-Jlazapesuh,

WuctutyT 3a Mexanuky, ITpHPOIHO-MATEMATHYKH
®akyntet, Beorpaa, Crynencku Tpr 16
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