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AN EQUIVALENCE THEOREM IN POINCARE-CETAEV VARIABLES
M. Hussain

In Lagrangian dynamics the equivalence theorem for a conservative
holonomic system is based upon the equivalence of Hamilton’s equations to
a certain pfaffian equation.

In this paper a generalisation of the mentioned theorem to Poincaré-
-Cetaev variables has been done and the generalised equivalence theorem is
further used to prove the Hamilton-Jacobi theorem.

1. Introduction

Consider a conservative holonomic dynamical system with n degrees of
freedom and whose position at any time ¢ is defined by the n parameters
Xy, Xy, ..., X, known as Poincaré-Cetaev variables. Let 7 and U be the
kinetic and potential energies of the system respectively.

Various indices along with their ranges of variation, which have been
employed in the sequel, are

i jok,oa, B,oy=1,2 ..., s=1,2 ..., 2n

and summation over a repeated index is implied.

In what follows we use the Poincaré-Cetaev method [I, 5] to write the
equations of motion of the system.

Let v,, 7,, ..., m, be the parameters of real displacement and X,,
X,, ..., X, be the corresponding displacement operators which are expressed
by the relations

(M ona“‘l“i“ﬂ Xj=E —

i .
where £ and £ are functions of x,, x,, ..., x, and 7. Since these operators
. ;

i

form a closed system we have the commutation relations
(2) (Xo, X;‘)’Xon—XonTCoUXj» (Xia Xj):Xin—XjXJ“ ijk X

Here C,; and C;; are functions of x,, x,, ..., x, and ¢ and depend upon
the choice of displacement parameters.
If f(x,, x,, ..., x,;5 t) is an arbitrary function of position then cor-

responding to an infinitesimal real displacement of the system the change in
f is defined by the relation

(3) df =X, (f)+nX,(f)dt.
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Putting f=x; in (3), we obtain

. odx; ! J
(4) ij*’Jf'a"’V]fa-
dt o i
Since the operators X,, X,, ..., X, are independent it follows that the
matrix iw is non-singular therefore the relations (4) yield
|/
() =A%+ A
where
j
(6) A,‘"“ "Afj ‘5
0
Let L=T-U be the Lagrangian of the system then using (4) we can
express it as a function of x;, x5, ...y X gy ooy M and 7. Consequently
the Poincaré-Cetaev equations of motion of the system are
d (0L oL oL
(7) —(—) —Coij———1; Ciix —— — X; (L) =0.
dr \ o, 0", 0Nk
If we introduce the momenta y; by the relations
oL
(&) Y=
o

The canonical equations of the system and Hamilton’s differential equation
as obtained in [2] are

©) =2, Y, ey Gy~ E):
oy, dt
(10) X,(N+Hx, X35 v Xu5 X (V) .- X, V), t)=0,
where H is the Hamiltonian of the system defined by the relation
H=vy;-L
and can be expressed as a function of x;, X;, ...y X5 Vis oo vy In and ¢t by

means of (8).

2. The Equivalence Theorem

Let o, ©,, ..., @,, be any 2n independent parameters which define
the position of the system in the phase space then the functions
X=X (W5 Wyy ooy Doy )
(11)
Yi=Yi(0y, 0y vy Oy 1)
are 2n independent functions of class C, in a domain D of (v, w,, « i Biag)

and an interval 7 of ¢ such that the Jacobian
dx,---,-xn, s""yn)
(12) (x, Yia

()((01, vie e § (’-)n’ (’)n+1’ trr ‘Ozn)

for (w,, ©,, ..., w,x)ED and t=I1. We now prove the theorems:

£0

5
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Direct Theorem: If H(X,, X,y .oy Xgy Vis - Vn, 1) Is a given function
of its 2n+ 1 arguments and Xx’s, y's satisfy identically for all values of «’s in
D the equations (9) then

(yi—H)dt=d{+K,duw

where  is a function of w's and t, of class C, and coefficients K are functions
of &'s only.

Converse Theorem: If there exists a function H(X,, ..., Xy Vs -+vs Yus 1)
such that the pfaffian form (v;y;— H)dt when expressed in terms of w’'s and t,
has the form d{+ K ,dw, then x’s and y's satisfy the equations (9).

Proof of Direct Theorem: Using (5) and (11), we get

. B

s

=U,do,+Udt,
where
0X;
(13) Uy=Ay3Y;—»
0w,
ox;
(14) U—Aij;——i+A;y,-—H.
ot
We shall now prove that
v _ou,
oo, Ot .

Using (4) and (14), we have

oU o0x; 07 0y; OH ox; O0H 0y;
***:j'_ (A:'j _xi‘*‘Ai) Myt =2 Vit i L. = 9, )
ow, 0w, ot 0 0x; 0w, 0); 0w,

5 O’)J

or using (9), we obtain

oU on; OH 0x;
15 ——y——— .
s 0w, g ow, 0Xx; 0w,

Now
OU, 03,4 0% O(A) Oxg %) O(A) 0% |\ \ 023
ot ot 0w 0Xxg Ot 0wy ot 0w, ow, 0t

which, in view of (1), (4) and (9), becomes

OUT ox; 0 A,-' 0x i s

e ':[Coim)’a+nmcafkyk"XI(H)]Aij'_'_J+’}’i ( QAi 'ﬂai“}“g +

(16) ot 0w, Xk 0w, 5 5
0 (Ay) 9%

i

0 j o
+yidy—| e E+E].
ot ow, " ’am,[n“é %]
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Since (1) and (2) give

5 0

X
and

therefore, after some simple manipulations, the relation (16) yields
oU, o oH 0x

ot 0w, 0x; 0w,

From (15) and (17) we get the required result

(17)

(18) L
dw, Ot
We now introduce a function ¢ (w,, ..., w,,; t) such that
0
vy
ot

therefore (18) gives
oU, oU 0,4  9,¢
ot dw, 0w, 0t 0tdw,

Integrating we get
0
U,= Lid +K,,

0w,

where K, is independent of ¢ and consequently

0
(m;yi—H)dt=U;dw,+ Udt:—qde (M+K,)du},
ot 0w,

or
(i yi—H)dt=d{+ K, do,

which is the required result.
Proof of Converse Theorem: Since

(niyi—H)dt=d{+ K;daw,,
it follows that
. 0 ox; O
}’,-A,j'()-—xJ' "f‘AiJ’i_H:j, yiAij_xiz ”quFK
ot ot

=
w, 0w

5 5

Now

N9 0X; oH OH ox, OH
d - (};‘_ AU()_XJ) — ( _l‘_ A_.xj_ ,+ A‘,}ri) T — - ( - g [
ot Jdw . 0w,

5

0y,

7().\',- ()(;), r -0;]',- -d(o,

)



71

An equivalence theorem in Poincaré-Cetaev variables

where we have used the relations
%Y %Y 0K,
0tdw, Owdt Ot
or
oy 1
}Adx,_l_ c)(/!)()x,(()erJd(A)_dx Al 0, X;

i~ - Yid;
ot o, 0xp 0t dw, = 0t Ow, "Otdw
0y; i 4 0x;  0(Aig) 0x; 0xg i 0, X; _dy,.A 04; 0x;

_— T e i . — V. — i

i i i ~ ¥

oo, " ot 0x; Odw, Ot d 70w, 0t dw, 0%, dw,
I
0X; 0w, 0); 0w,

Using (4), the last relation takes the form

ox;[ , dy; O(dy) [ % % 0(A4;) O0(Ay) | & K
£ P Whar <L PR i E+i) +yi—— "-——-----'K( E—i—i)—
0(0[ " ot 4 0 Xy ( @ o d ot ! 0X; ”’Jaa 0
0A4A; OH] o0y £ & oH
ekl —A,-K(naaﬁLa)—Aﬁ—]r—o
or using (6), we get
k
19
gx, PR I LI g ) ol
o ij Ot + ¥ ot 5 a x;
. i k 0(4; OH | 0y; oH
pran (2000t 8| onl_ 0H] g
a 0xg o« OX; 0x;|] 0wy 0y;

There are 2n such relations one corresponding to each w and consequently
(12) yields

oH
(19) Ni—=——
0y,
0y, kK d(dg) kB o k o (8
= -yl E =+ EE — () +E Ajp— (E) +
ot y’[e ot oioxg 0 T P ox\o

0 (Akp) ész
()XY i ()Xj '
or using the expressions for C's and X’s we finally get the second of equations
(9). Hence x’s and p’s satisfy (9). This completes the proof of the equivalence
theorem.

We now deduce Hamilton-Jacobi theorem in Poincaré-Cetaev variables
by the application of equivalence theorem.
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3. Hamilton-Jacobi Theorem

_ If V(x, ..., x,; 4, ..., a,;t) is a complete integral of Hamilton’s
differential equation (10) then the integrals of Hamilton’s equations (9) are
given by the relations

)V
(20) Yi=X;(V), b= — =
da,
where the b's n are ncw arbitrary constants.
Proof: From (10) and (20) we have
. i
(n,-y,-H_>dr=n,-X;<V)dr+X0(V)dr;dVJo -dg,
a

or

(nyi—H)dt=dy+b,da;,

where ¢ is V expressed in terms of «'s, s and ¢. Now x’s and )’s are
independent functions of a’s, #’s and 7 as given by (20). Therefore by the
converse theorem it follows that x’s and )’s satisfy Hamilton’s equations of
motion. Hence the theorem is proved.
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