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ONE-FREQUENCY NONLINEAR FORCED VIBRATIONS OF
UNIFORM BEAMS

Katica R. Hedrih

I. Introduction

In this paper is applied the asymptotic method of Krylov, Bogoljubov,
Mitropolskij for solution of partial differential equations of transversal forced
vibrations of uniform continuous beams in terms of the action to a beam of
one-frequency force with slowchanging frequency in linear and nonlinear
conditions of vibrations of beam, the origin of which is in the nonlinearity
of material of beam. By means of the differential equations of first
approximation for amplitude and phase of one-frequency regime of vibration
which depends on the initial conditions and exciting referent resonant frequency
of an external force, there are composed the amplitude-frequency resonant
curves of stationary and nonstationary regime of vibrations for linear and
nonlinear cases, and for the case of different velocities of growth and fall
of circular frequency of an external force which are shown on the graph.
Using them, one can make analysis and comparison of the corresponding
regimes of vibrations.

II. Application of the asymptotic method for finding solutions and
differential equations of the first approximation for beams
vibrations in the one-frequency regime

Now we can study nonstationary transversal vibrations of homogeneous
rectilinear of uniform continuous beam in terms of expressed physical nonli-
nearities at the action of an external one-frequency force which is continuously
distributed on the span of a beam. This force has slowchanging frequency in
the resonant range of a proper natural circular frequency. Should the initial
conditions be such that they cnable the appearance of a one-frequency regime
of beam vibrations? Therefore we will study twoparameter approximation of
a family of twoparameter solutions for a partial equation of transversal
forced vibrations of uniform continuous beam, which is homogenous, rectan-
gular and has a matrix form:
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In previous equation the marks are the following: {v} matrix of columns, the

elements of which are the flexures along the corresponding span with the
form of:
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€ is small parameter, ¢ {f*} is a matrix of columns of nonlinear perturbance
due to proper nonlinearities of a continuous uniform beam, the elements of
which are the proper perturbing forces on the corresponding spans of beam;
c’=PleA; e is the coefficient of elasticity of a substratum onto which
the beam is vibrating. We add below the following boundary conditions to
the partial differential equation (1);
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where L; are linear operators depending on the form of beam leaning, as
well as the initial conditions:

4) (0, )} =a,{Z, (2)}; {3: (z, O)] =Po{Zs (2}

which enable us to attain a one-frequency regime of vibrations. {Z,(z)} is a
matrix of columns, the elements of which are proper functions Z,(z) of a
homogenous uniform continuous beam for the case of unperturbed vibrations,
but for n-th proper value. Z,(z) are satisfying the linear boundary conditions
(3), for which it is shown in the literature that they fulfill the conditions
of orthogonality. We suppose that «(f*} is a matrix of columns the elements
of which are monotonous functions of the coordinate z, and of whole rational
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functions of the other arguments, v, —,.... Matrix of co-
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to the corresponding spans of a continuous beam. v-(-]-:v(‘r) A w, 18 circular
t
frequency of a compelling force and is a slowchanging function of parameter =,
in the range of n-th proper natural circular frequency of unperturbed vibrations.
According to the assumptions introduced into the works of Mitropolskij [1] for
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composing of one-frequency asymptotic approximations we can look tor the
first approximation of solutions in the form

(5) {v(z, t)={Z,} a,cos 0+,

where ¢, is the phase, while the amplitude a, and phase ¢, are the functions
of the time ¢ and are calculated from the differential equations system of
first approximation which have the following form in the energy interpretation:
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and p and ¢ are reciprocally simple numbers; i and §W° are ‘‘the partial

3¢, 3a,
derivatives”’ of the mean value of virtual work.

To compose all these equations for the definite case, it is necessary to
define for definite case in question the mean value of virtual work done
by perturbing forces

ov o0v 0*v o0ty
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in the regime of cosine vibrations on the virtual displacements, which
correspond to amplitude and phase variations of n-th harmonic of proper
unperturbed vibiations:

{3v}={Z,}[3a,cos 0+, —a,sin (0+¢,) 83,].
The mean value of virtua! work for this case is:
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where (f) is a row matrix whose elements are proper nonlinear perturbances.
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Now using the mean value of virtual work the “partial derivative” of
which are:
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we can compose the equations of first approximations for amplitude and
phase of n-th perturbed form of homogenous uniform rectilinear continuous
beam in one-frequency forced regime of vibrations and using the system (6)
we have:
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Let us study now this system of differential equations of first approxi-
mation for the case when the law of elasticity of beam material is nonlinear
and takes the ratio between stress and deformation according to the technical
theory of bending of Kauderer [4]. In that case perturbing force due to proper
nonlinearity of material has the form:
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The system of differential equations of first approximation for amplitude a,
and phase g, (10) of n-th one-frequency perturbed proper form of vibrations is now:
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li
> [ 2@PrvzizN20 2,0z
i=1

(13) 1(Z)=— ;
EI: Zﬁdz
i=1

0

and
li

S [ h) 2z, d
i=1
(14) H(Z, h)=—2—

i
HZI [Zﬁ(z) dz
=1«
0

where n, is the number of spans. The coefficient (13) will be named as
the coefficient of influence of nonlinearity of material of a beam to the
change of proper circular frequency of vibrations, but another (14) will be
named as the coefficient of influence of compelling force to velocities of
amplitude and phase changes of the studied perturbed form of vibrations.

If vibrations are done in terms where resistive forces are in linear

p-oportion to the velocity, differential equations of first approximation would
become of the form:
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III. Testing of stability of stationary resonant state

For the case of stationary resonant state it will be necessary that the

following terms are satisfied d;" 0 and dlrp”—-() at the constant value of
dat dt

parameter of slowchanging time t. This condition is applied to the system of

differential equations of first approximation (12) and after removing the

angle ¢, from the system of equations one can get the following algebraic

equation of the third degree for calculation of stationary amplitudes in

function of the perturbing force frequency:

cosp,=0 o,= 2-4-2/{75
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By solving this equation for change of frequency of the external force in the
resonant range of n-th proper circular frequency, one can get the values of
amplitude by means of which it would be possible to compose the amplitude
frequency curve of stationary resonant state, the skeleton curve of which
has the following form;

8w
| . \/ __ T
(17) anr= + Y9y (Z) (v—w,)
On the sketch No. 1 a is shown the characteristic of that skeleton

curve, which is a parabola and represents the asymptotic curve of amplitude-
-frequency graph of stationary resonant state.
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Sketches No. 1

If we neglect nonlinear influences we may get the amplitude curve of
stationary resonant state for the case of linear vibrations. For the linear case
the skeleton curve of amplitude-frequency graph is straight line v 2. By
comparison of those curves one can arrive to the conclusion that resonant
curve of stationary amplitudes for nonlinear vibrations is bent to right, but
at linear vibrations it is a hyperbola the asymptota of which is straight line.
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Applying the Ljapunov’s theorem of stability to the system of equations
of first approximation and using those equations written by means of variations,
we come to the conclusion that a certain part of amplitude-frequency curve
representing stationary resonant state a, is described by a thin line with
amplitudes corresponding to unstable vibrations, so that on that part has
appeared the so-called jump of amplitudes, which is characteristic for the
nonlinear systems.

If we take into consideration the influence of external resistive forces
from the conditions for stationary resonant state, we obtain the following equations.
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The skeleton amplitude-frequency curve of the graph is the same as in the
case of neglecting the resistive forces. In this case the amplitude-frequency
curves are finite and cut the skeleton curve in the point that is obtained as
a cross section of the skeleton curve

% 8w,

and the curve
(20) a, (8 + p k%) (0,—v)— H2(Z,, h)=0.

At the cross section of these curves the coordinates of 7 point is marked in
the sketches Ne. 1.

1V. Analysis of amplitude-frequency curves of nonstationary resonant state

In the example of vibrations of the homogenous uniform rectilinear
continuous beam with two equal cistances of length (spans) /=2 [m], with
rectangular cross section axb=35x6[cm xcm], from steel, with module of
elasticity £=19,62-10'° [N/m?], density of material of beam p= 7,8 10%[kg/m?],
coefficient of nonlinearity of elasticity law of material of beam a, E*=10'2 [N/m?],
or A=996,92-10%[m%/sec?], loaded by equally distributed loading on the first
span of amplitude F,=981[N/m] and the second span of amplitude F,= —
—981 [N/m], circular frequency v(t)=180+at for the case of growth of
frequency and v(7)=260—at for the decreasing case of circular frequency of
compelling force. Let vibrations be done in terms of external and internal
linear resistance of the coefficient p = 0,8 [m*/sec] for external one and & — [sec—2]
for internal one.

First proper circular frequency of unperturbed vibrations of two-spans
beams is ©,=216,3396 [sec™'], but its corresponding vibrating period is
T,=0,02931414 [sec]. Circular frequencies of the compelling force in increase
and decrease pass through the value of the first proper circular frequency, so
that we may study vibrations in the one-frequency basic regime of vibrations.
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Equations of the first approximation (15) for given numerical data will
obtain the following form:

da, _ 78,81538
4,4a — COS @,
dt 214,34 +v(1)
1)
1 |
P _214,34 v (1) +32323,64,2 + BALloAE e
dt [214,34 1+ v (1)] 4,

while the skeleton curve of amplitude-frequency graph has the form
(22) o, (a,)=214,34 1 32323,6 a,*.

and is marked in the Figure Ne. 2 by s,.
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For the case of stationary resonant state if we neglect the infuences of
external and internal linear resistances we can obtain the curves s, and s,
from the Figure Ne, 2 are obtained which continue infinitely. If we take into
consideration the influence of resistive forces, we can obtain the amplitude-
-frequency curve drawn by a dotted line which is finite and approaches to
smaller amplitudes . if the coefficients of resistive forces are increased. Amplitudes
on the eurve s, distinguish stable stationary vibratory regimes, while on the
curve s, are appeared the amplitudes which by their side distinguish unstable
vibratory regimes — thin drawn part of the curve s,. In terms of influence
of resistive forces in the growth of frequency of external force, the stationary
regime of vibrations are distinguished by amplitudes on the curve s, in the
direction of growth to the point B (T (3,77%%-1072[m]; 260,349 [sec™")), then
has appeared the jump of amplitudes to the stable stationary regime of
vibrations which is now distinguished by amplitudes from both sides of the
curve BC, instead of the part of the curve TDC, in the direction of the growth

of frequency and decrease of amplitudes.
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In terms of influence of resistive forces, at decrease of frequency
the stationary regime of oscillations is distinguished by amplitudes from the
part of the graph s, up to the point D in the direction of increase of
amplitude, in which, has appeared the jump of amplitude to the point 4 and
amplitudes of the stationary regime of vibrations take the values from the
curve s, in the direction of decrease of frequency and amplitude.

Equations of first approximation for amplitude and phase (21) are
numerically integrated by means of the method of Runge-Kute on the IBM 1130
computer for mamy different velocities of change of the external force
frequency. For each curve 1500 points were calculated and 75 points were
printed. As initial values of amplitudes and phases were adopted the stationary
values for corresponding initial value of the external force frequency. On the
Figures are shown only the amplitude-frequency curves for the cases of
velocities of change of frequency of the external force: o, = 45 sec~2; a, = 90 sec~2;
a, =450sec™ and for the cases where it is taken into consideration the influence
of nonlinear law of elasticity of material of a beam and where it should be
neglected on purpose to make some comparisons.

On Figures Ne. 2 and Ne. 3 by [/ are denoted amplitude-frequency curves
of the nonstationary resonant state in the linear case when the nonlinearity
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of material of beam is neglected in Fig. Ne. 2 for increase of frequency, and
in Fig. 3 for decrease of frequency when the frequency change of velocity
is 45sec™. By the same Figure are denoted amplitude-frequency curves
of the nonstationary resonant state-pass through resonant state, if we take
into consideration the influence of nonlinearity of material of beam, that is,
in Fig. No. 2 for the case of increase, and in Fig. No. 3 for the case of
decrease of circular frequency of perturbing force.

In the case of increase of frequency of perturbing force it may be seen
on the graph in Fig No. 2 that the first maximum of amplitude-frequency
curve for the nonlinear case moves towards higher frequencies and amplitudes
and it is more dangerous than linear case of pass through resonant state.
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In the case of decrease of frequency it may be seen from the graph, in
Fig. No. 3 that the linear case is more dangerous because the maximum
amplitude is larger and moves towards lower frequencies closer to proper frequency
of unperturbed proper vibrations than the maximum value of amplitude for the
nonlinear case of nonstationary resonant state. Here the nonlinearity of law
of elasticity of material of beam influences so that it moves again the first
maximum towards higher frequencies, but not towards higher amplitudes too
as it was in the previous case, but towards lower amplitudes. We come to
the conclusion that the influence of nonlinearity of material of beam is more
dangerous only in the case of increase of frequency of the external force.

Also we come to similar conclusions and analysing amplitude-frequency
curves of the nonstationary resonant state for the cases of change of circular
frequency of external force at increase and decrease by velocities fo a, =90 sec™?

2

and a;,=450sec™?.

On Fig. No. 4 are shown amplitude-freqeuncy curves for the linear
case of vibrations of twospan beam and this in terms of decrease and
increase of frequency of the external force for three denoted velocities of
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change of frequency of the external force. It may be seen on the graph that
the largest maximums of amplitudes are largest at lower velocities of change
of frequency of the external force, namely that they are the smallest at highest
velocities of change of fiequency of the external force. The conclusion is that
from the view of development of the maximum amplitudes the dangerous cases
are the slow passes through resonant state of vibrations. On these graphs it
may be seen that amplitude-frequency curves of the nonstationary resonant
state for the increase and decrease of the frequency by same velocities for
the linear case vibrations cut on the line v=w, =214,34sec™!, but the graphs
are symmetrical if the initial conditions are conjugated. For higher velocities
of the pass through resonant state of the linear system the maximums of
amplitude-frequency curves for the increase and decrease of the trequencies of
compelling force approach the line v=o,= 214,34 sgc™L,
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In Fig. No. 5 are shown amplitude-frequency curves for the case of the
twospan beam in terms of the influence on the nonlinear law of elasticity of
material of a beam and when the frequency of the external force increases or
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Fig. No. 5

decreases for three velocities of the change of the frequency o;=45; 90
and 450sec™?. As in the linear case, the first and highest maximums of
amplitude-frequency curves move towairds higher amplitudes and for lower
velocities of the change of frequency of the external force, but they move towards
lower amplitudes for higher velocities of the change of the frequency. The
same happens also in the case of deciease of the frequency of the external
force In the case of the change of frequency of the external force by velocity
of 45sec™? the resonant range will be passed for about 100 periods of
unperturbed proper linear viabrations of twospan beam, but for other two
velocities of the change of frequency of the external force, it would be
passed for about 50 (for «,-90sec?), namely for 10 (for o,=450sec—2)
periods of unperturbed proper vibrations.

LITERATURA

[1] Mutpononsckii, YO. A, [lpobaemsr acummnmomuueckoii meopuu Hecmauunaphsix
rkoaebanuit, Mocksa 1964, Mup.

[2] Vujicié V., Teorija oscilacija, Beograd, Savr. adm. 1965.

[3] Raskovi¢, D. Teorija oscilacija, Begrad, Naucna knjiga, 1960.

[4) Kauderer, H. Nichtlineare Mechanik, Berlim, 2965

[5] Ctepanosuy (Xeapux) K:, Pamkoswuy, ., Hecaeoosanus ,eviucuacnonibix
Koaebanuit 6 0OHOYACMOMHOM PEKUME & HCeAUNCHHBIX CUCMEMAX €O MHOUMU CIIENeHAMbI C60600bI
u meonenno mensomumea napamempamu,, Nonlinear vibration problems, Ne. 55, 1974, p. 200—220,
PWN-Warszawa.

[6] MuTtpononbckuif, K. A, Moceuxos, B. WU, Jexuuu no npumenenuro
ACUMRMOMUYCCKUX MeMoQ08 K peuwienulo ypasnenui & uacmubix npouzsodnsix, W3g. Wp-ma
matemaTukd AHYCCP, Kues 1968.

Dr. Katica R. Hedrih, docent Masinskog
fakulteta u Nisu
18000 — NIS
ul. Bulevar Lenjina br. 12/X/60
Yugoslavia

4 Mehanika 4



50 Katica R. Hedrih

OJAHOYACTOTHBIE HEJJTHEMHBIE BbIHYXJIEHHBIE
KOJIEBAHUS HENPEPBIBHOW BAJIKU

Kamuua (Cmeesanosuu) Xedpux

PeszwmMme

B paborte npumenseTcs sHepreTndeckuii metoa Kpronmosa-Borosrodosa-
-MUTpPOMOIBLCKOTO [JIsi MOCTPOEHUSI ACHMIITOTHYECKOTO peLIEHMs U CHCTEMBI
nupdepeHIIHANLHBIX YPABHEHHH NEPBOro NPUOJIMKEHHUS i aMILUIMTYbl M Ga3spl
O/IHOYACTOTHOI'O PEXUMa TONEPEYHBIX BBIHYXICHBIX KOJIeDaHMH HenpepbiBHOM
daniku. [MocTpoeHbl oO1iMe BhIpaXeHHd AJI cly4yasi IPOU3BOJIBHBIX KPAaeBBIX YCIIO-
BUSIX HENPEPBLIBHOH OajIkM, eCliM HaM H3BeCTHb! (yHIaMeHTajbHble (YHKUHH H
COOCTBEHHBIE YACTOTHLI HEBO3MYILEHOH (OpMBI TNoONMepYHUbIX KoJjebanui Henpe-
PBIBHOM OalKu.

ITocTpoeHO BBIpaXKeHWE [JIsi BEJIMYNHY CpeJHeil BBIPTYJIaJbHOH padoTh
KOTOPYIO COBEpINAET BHEIIHAA BO3MYILIAIOUIAA BBIHYXJEHas CHJIa KOTOpas
NEMCTBYET HA HeENpephiBHYIO Oaliky.

YacTtoTa BHELIHEH BBIHYX/IEHOH CHJIBI MeJIeHHOM3MEHsIowancsa QyHKIus
BpemMeHHd. C TOMOIIBFO MOCTPOEHBIX YPAaBHEHUIT M3y4YaloTCs JIMHEMHE W HeJIMHEeWHNne
BBIHY)K/IGHBIE IONEpeYHbIE OHOYATOTHBIE KoJieOaHHsi NBYX TpPONETHBIX DaJIoK
JUIS  CiIyvasl CTAllMOHAPHOTO M HECTAllMOHApHOrO pe3oHaHca, W [Uisd cliy¥as
pacTeHUus W YMAHBLIIEHUS YacTOTHI CHJIBL.

JEJHO®PEKBEHTHE HEJIMHEAPHE ITPUHYAHE OCHMUJIAIIUIE
KOHTUHVYAJIHE T'PEJIE

Kainuya (Ciuesanosuh) Xegpux
Pe3zume

V oBoM paay uckopumhieHa je eHeprujcka MHTEPIpETaIHja acCHMIIOTOTCKE
metone Kpuiosa-BorosbyGoBa — MHTPOIJBCKOr 3a CaCTaB/bathe IPBE ANPOKCH-
Mamje pemema M cucTeMa AudepeHIujaTHuX jeJHavYMHA TpBE anpoKCHMallnje
3a amMmumaTyay M a3y jeaHoppeKBEHTHOT peXMMa MPHHYIHUX TPAaHCBEP3aJHHX
oCUMJIAIlMja KOHTHHyaJHuX rpena. JlaTh cy onmTH oOpacud 3a NPOM3BOJbAH
cilydaj JMHeapHHX TPAHHYHHMX YCJIOBA KOHTHHYaJHe Ipelie, ako je MO3HAT CHCTeM
CONCTBEHHX (DYHKIMja M CONMCTBEHWX KPYXHHX (pekBeHImja Henopemehenor odiuka
OCLIMJIOBAha KOHTHHYAJIHOI HOCava.

IlaT je W3pa3 3a Cpeimy BPEIHOCT BHPTyaJHOr pajga mnopemehajHe mpu-
HyJHe CHJIe KOja [ejCcTByje HMa rpeiy. TpeHyTHa KpykHa (pexBeHINja CIOBALLHE
chjie je cmopo-mpoMen/buBa (QyHKIHja BpemeHa. Ilomohy wu3BeneHHX jeaHAunMHA
aHANM3MpAjy ce JMHeapHe M HeJMHeapHe TpPHHYJIHE TpacBeps3ajue jelHOdpex-
BEHTHe OClMjalMje KOHTHHYaJJHMX TpeJia 32 CjiydYa] CTAlHOHAPHOr W HecTalHo-
HADHOT PE3OHAHTHOT cTama. JaTH ¢y aMIIHTyaHO-QpeKBEeHTHH rpadumi 3a
cy4aj CTAIMOHAPHOr M HECTAIIHOHAPHOT PE30HAHTHOI CTamwba, a Yy yCJIOBMMA
pacTa W onajama (PEKBEHIMjE CHOJbALIME CHIE.



