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THERMOELASTIC DIPOLAR CONTINUUM

Z. Golubovi¢

1. Introduction

The theory of finite thermal deformations was derived by R. Stojanovic
et al [1], who separated the total compatible deformation into two incom-
patible ones-thermal and elastic. However, in that paper no constitutive as-
sumptions were made, but they were taken into account in [2], where a stress
relation was formed for nonlinear thermoelasticity. In [2], an analysis was
also made of constitutive equations for isotropic media. A stress-strain rela-
tion for nondissipative processes is given in [3], with stress couples included.
After a detailed analysis of a geometrical treatment of the problem of ther-
moelastic materials without structural defects, the compatibility conditions
for nonlinear thermoelasticity were developed by M. Micunovic [4].

At the same time appeared some new theories of the mechanics of con-
tinuous media. A general theory of microelastic materials, considered as a
generalized Cosserat continuum was presented by M. Plav§i¢ and J. Jari¢ [5].
Nonlinear constitutive equations were derived by means of the principle of
virtual work. In the case of isotropic materials these equations were linea-
rized. Consequently, micropolar, dipolar and polar theories were derived.

The present paper analyses thermoelastic deformations of a dipolar con-
tinuum from a geometrical point of view. The continuum deformation will
be completely determined by deformation gradiants, since in the dipolar theory
the vectors joined to continuum points are material vectors. Besides, the tem-
perature field is assumed to be known.

2. The structure of a geometrical model of the thermoelastic
deformation process

Let .73 be the part of space filled up with continuously distributed
material. At the moment ¢,, the body .93 is at its initial Euclidian confi-
guration K, with some constant reference temperature 3. Let us first assume
that the body .73 is constituted of material volume elements which can be
independently deformed. The body .73 in its reference confiquration is heated
without external forces in such a way that the temperature changes from
element to element, but is constant in each of them all the time. Then the
body 3, from the reference configuration K, comes to the unstressed, ther-
mally deformed configuration K, composed of variously deformed volume
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elements. As a con:equence, we get a non-Euclidian configuration K,, because

thermal deformations induced by unequal heating are incompatible. How-

ever, since any non-Euclidian configuration of the body %3 is only imagi-

nary and has no physical meaning, the

Aty ™ o body %3 in configuration K, must undergo

W& ' ' an addicnal incompatible deformation,

3 ! which causes stresses inside the body and

+-7 transforms the non-Euclidian configuration

i) K, into the Euclidian deformed configura-
tion K.

Referring to a system of coordinates

X%, let us consider an arbitrary point

A (X*) inside an arbitrary volume element dV of the reference confi-

guration K, and at this point threec noncomplanar vectors D!.((m), =1, 2, 3

The described thermal deformation transforms element dV into dv,,

point 4 (X¥) into A(x*), and a vector triad D%, into d‘fm. Since K, is a

Euclidian and K| non-Euclidian configuration only a local correspodence is
established between them through the following thermal distortions 6”x:

Fig 1

(2.1 d* =0 D%,

However, the deformation of the given vector triad is not independent of
the continuum points displacement, and hence the deformation of dV (i.e
deformation of the body (73 as a whole) in the transformation K,— K, is
completely defined by the thermal distortions:

(2.2) Ver=d D%

for, knowing GJ.LK, we also know the deformation of the arbitrary fourth
vector:

(2.3) dv— 6" DX

If we look at the coordinates DX, which refer to the point A4 (X%), as dif-
ferentials:

(2.4) DX - d ¢K

it is evident that the lincar differential expressions 0’ d %X are not exact dif-
ferentials. If we introduce:

(2.5) . d* = dn*
then, the equation (2.3) takes the form:
(2.6) dn* = 0" d EX

These conrdinates n* are not true, but non-holonomic.

The transformation of K, into K by an elastic incompatible deforma-
tion will be now referred to the system of curvilinear coordinates xk. Then
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the element dv, is transformed into dv, the point A4 (x*) into A (x*), and the
- i k
vector triad d°, into d. .
k k A
(2.7 d.=P"d"

Since these vectors are material ones, the transformation K, — K is comple-
tely defined by elastic distortions:

(2.8) L

From (2.1) and (2.7) it is evident that:

(2.9) X =05 0%; p gL
because:

(2.10) 4% =00 DF DE =05 0" d

where X are material coordinates and x are spatial Euclidian ones.

Since the difference between K, and K, arises only from different tem-
peratures v, and v,, thermal distortions must be functions of the local tem-
perature. That dependence is supposed to be known:

(2.11) 0% =024[0(X5)]

Then it follows from (2.1):

(2.12) d =0

while from (2.7), (2.12), (2.1), (2.9),, (2.10), we get:

(2 13) Cj!.((a) = (Dku (Di:"e df‘(a); dif(a) = vi‘;cl'!.(m)
where:

(2.14) oF, o=,

Let us further assume that the mass of the body remains constant du-
ring the deformation:

(2.15) dm—p,dV —=odv;  dm=0
where p, and g are mean densities of dV and dv.

Kinetic energy can be expressed as in [5]:

(2[6) ZT‘——IP(P" l‘t——[—la'@d{(q)d”mdl',

v

where the coefficients I** are defined by:
(217) J*B = JRo . JKL D(""])(D(.ﬂz,

while the coefficients of inertia /XL refer to the center of mass of the given
element. Then:

(2.18) T=[o(vv+I8d. o d,g)dv
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which, making use of (2.13), can be written as:

(2 19) T— [ o (viv+ i b, &%) dv
i.e., by using (2.15): v

(2.20) T—[p(vv+Tiv,)dv
where the inertial spin is: v

(2.21) M= [8d’ ., d e

Using (2.13) and (2.21), we get:

(2.22) ri—iki (@', d% + ', d% +d', d* ', @)
where:
(223) N = JoB (I'].((a) d’r )

From this it can be seen that the inertial spin is completely determined by
the elastic distortions and quantities i¥.

3. Equations of energy balance and motion

We suppose that the body .73 is acted upon by the surface forces T
and HY as well as the volume forces fi and /Y. Then the effect of work of
the surface and volume forces is:

(3.1 A= §(Ti v+ HI® dygy)ds+ [ o (Fiv+ 1@ d,; ) dv

where s is the closed surface which envelops the volume v, while the quanti=-
ties H'® and /' are defined by the following relations:

(3.2) HI@=H1d%; 10 =i d%)
where:

HY — s the first surface moment

li — first volume moment.

Using (2.13) and (3.2), (3.1) can be written in the form:

{3.3) A= fz (Tiv,+ HYv, ;) ds + f e (f'vi+1iv, )dy
The effect of nonmechanical work is given by:

(3.4) Q- ¢ qds+ [phav
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where ¢ is the heat flux and # — specific energy production. Taking into
account (2.15), the time derivation of specific internal energy e can be writ-
ten in the form:

(3.5) E:fpé dv

Using (2.20), (3.3), (3.4) and (3.5), the first law of thermodynamics can be
written as:

fp({'v,-ukl""fv,.j) dv + fp.sdv=9§ Tiv;ds+ ‘Jg HYv; ;ds+
(3.6) ) " : “
+ [ ofividv+ [ oliv, dv+ [ qds+ [ o hdv

If the surface integrals in (3.6) are transformed into the volume ones, be-
cause the equation is valid for an arbitrary element, we get:

(3.7) oviv+p Dy, +pe=tTv v, +hlev, ,+
+ hvk V:',jk‘F‘f—I.ifJF ef vitpliv, ;+eh.

which represents a local equation of the total energy balance, where ¢V is
nonsymmetric stress tensor, and A% — the first stress moment.

We shall now postulate the invariance of equation (3.7) in respect to
superposed rigid motions. If at a position corresponding to the moment ¢
the translation velocity, which is constant, is superposed on the velocities of
the body points, then it could be shown that all quantities in (3.7) remain
unchanged with the exception of v;, which should be replaced by v, +a,
where a;=const. In order that equation (3.7) may stay invariant with regard
to such a superposition, the following relation must be satisfied:

(3.8) ov,=t"i+pfl.
This is the first Cauchy law of motion. Thus, (3.7) becomes:

(3.9) oy, +oe=tiv, +h"y

Vi g i+e iy, +oh.

If, now, at the considered position which corresponds to the moment ¢ we
superpose the angular velocity of rotation, which is constant, upon the velo-
cities of the points of the body, then it could be shown that all quantities
in (3.9) remain unchanged with the exception of quantities v;; and IV,
The quantities v; ; and I'Yy; ; in (3.9) should be replaced by v;;+€Q; and
IV (v; ;+€;;), where (; represents an arbitrary constant antisymmetrlc tensor.
In order that (3.9) may be invariant on this superposition, the following
relation must be fulfilled:

(3.10) i — i
where 1Y denotes:

(3.11) i = i 4 b 4 o (19 — T¥)
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Thus, (3,7) becomes:

The equation obtained in that way, which describes the rate of change of
specific internal energy, is invariant in respect to the superposed rigid mo-

tions. For reversible processes, the equation of specific entropy production
becomes:

(3.13) o0 — g +oh

where 0 is temperature and % specific entropy. So (3.12) can be written as:
(3.14) pe =Ty, +Hk v, o+ oy

which, by means of (2.15), may be expressed in the form:

(3.15) oe = 70 @, @Y HUR (D, , DY+ D, DY 1) Xy + 06,

This equation speaks about the quantities which could be determined from
the constitutive equations. These are 7, h'UK and 0. It is evident that from
the constitutive equations it is impossible to find stress tensor ¥ directly,
but it must be determined from the system (3.11). However, since the tem-
perature field is assumed to be known, the constitutive equation for 0 is
quite needless. Consequently, the dependence of ¢ on % does not play an im-
portant role, and (3.15) becomes:

(3 16) e W—- <l Cbm (Duj + hitik) (d)t‘u;k (D;.Lj-%d)iu (le'j;k) Xf(k

4. Constitutive equations

From (3.16) we conclude that the specific energy of deformation w is
a function of elastic distortions only:

(4.1) W= (D5 D)
so that:
. aW > 7 ()W = F
(42) W=——F—&/. ‘__(D-y.;k
o', Yo,

By comparing the coefficients of independent velocities (i)fu and @y, in equa-
tions (3.15) and (4.2), we get the constitutive equations:

. | oW ; ow ;
di— gt 27 @l 4 i )

P& (O(D{.M w s k
(4.3)

”» . OW ;
i =ggt—0r— @Y, 1%
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which, by means of (2.9),, can be written as:

) A OW ow ;
R SN
- 0d', oD,
o —pr 2 oot
@A
where: :
(4.5) @' =@, 05

is introduced as a formal notation in order to write constitutive equations
as concisely as possible. If the second Cauchy law (3.10) is to be satisfied,
the condition:

oW . OW ;
(4.6) (g“' ALSY P R Y M) w,
0D, 0D [if]

must be fulfilled, which for the specific energy of deformation and constitutive
equations represents an invariance condition as related to the superposed rigid
motions.

From (4.4) we see that the specific energy of deformation is a function
of the form:

4.7) w-w(',; o)

wherefrom it can be seen that it depends on 9 +27 =36 variables. However
we have 3 +9 partial differential equations =¥ and A#'U%, and these will have
36 — 12 =24 fundamental integrals. We shall take as fundamental integrals:

Cf{.l, :gu (Dj.}\ (Dju
(4.8)

L 1 : ; .
Diﬁw =8 D, (D}(LW) h 5_ &ij D.x ((Dj- w2 T d)}-?\u) - D?iw

so that the general solution of system of partial differential equations reads:

(4.9) W=W(Cr; D)

Substituting (4.9) in (4.4), and using (4.8). we get the constitutive equations:
ow

i — 72 o E (Di‘ 5 q)j' n
AL
(4.10)
= oW 5 E
hl(]k)=p . B q).)_q)-!;_(bftv
OC}LUJ

They are also invariant with regard to the rigid motions.
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5. Isotropy

For isotropic materials the following space tensor elastic deformation
can be introduced:

Cip=8uy P4 DYy = By, D,
(5.1)

) I r v v
flfp“ == 2/ grk (D <AL ((DAP (D 7l 'I“ q))-\nr (I) -p)

In this case, the constitutive equations (4.4) could be written as:

. oW g.; oW g . oW g
B=dp WE"E —2p—5 dEkp +p E_d‘-gjwn
ackj kpj 0 ipm
(5.2)
pitiky — OW
odj

where the condition of objectivity must be satisfied. Since the spatial tensor of

elastic deformation cf,, may be replaced by a corresponding tensor of relative
deformation:

(5.3) 2 €p=8ip — Chp

the constitutive equations (5.2) could be written in the form:

Tij_o(a_ni-—zaw Ekt 2 OPEV dEkpi —algf dE::;m)
()e,, ()E’M kpj adiprn
(5.4)
;,:uk)_i)_’ﬁ
aduk

where the condition of objectivity must be satisfied:

(5.5) (ﬁz oW it O e O d’?;;,,,) 0
ey 0 die O dipm [

Using (5.3), (5.1) and (4.9), as well as the relations which correlate the de-
formation and displacement gradients:

K K K . r r r
(5.6) : Xipez By ~typ; X, mMm=8m+u; m
¥ E . E . . § g
we can express the deformation tensors ey, i di,m 1n linear approximations:

1
efp = ? (uk.p + up,k) —af gkp

(5.7

E
dkpm = Uy, pm— % gk (pe' m)*
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If the temperature increment is sufficiently small, 6% can be approximated
by:

(5.8) 0% = (1 -+ ab)8F

where « is the coefficient of thermal propagation. However, by analogy with
[2] we can write:

T E T E
so that:
T 1 .
€kp= of Ekps ekp:E (uk.p+up.k)a

(5.10)

. T
dkpm = Uy, pm> dk.pm =gk (pB’ m)

If nonlinear terms in constitutive equations (5.2) are neglected we obtain:

. ow s ow
5.]. l) TV = —_ hl(]k)z
, "ok gy

Therefrom we see that the specific energy deformation function assumed the
form:

(5.12) w=w (e dix)

and, because it is an isotropic function in the linear theory, it can be ap-
proximated by the quadratic polynomial:

B .
(5.13) pW—EA‘Meg ef;+?B'f’<""" diji dimn

where A% and Bikim» are isotropic material tensors given by material con-
stants ([3]).

Using (5.13) in constitutive equations (5.11), and bearing in mind the
form Ak and Bikimr we get:

(5 1 5) BiUk) — [11 gik dE“' pd ]32 (dEjkl' + dEkji) + 113 dEiik |-
+h, (2 d gk d™ 4 g d™ ) 1 b (g d" ik + gk d™})
where:
Yw=h; 2v,=hy 2vy=hy Yva=he 2v5=hs.

If in constitutive equations (5.14) and (5.15) the space tensors of elastic de-
formation e,-? and djj are expressed by means of (5.9), we obtain:

(5.17) th=Ne,g"+2pe’ —(3N+2p)ab gV
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(5.18)  hiUK —p, gik (") —a0) - h, l d’ki + ghit — : (2 g7k 01 — gik Q.k _ gki 0-1)] +

+ hy | dY* ':(gif()-k - gik a.j)J

1 h-t [2 gjk (d[.f' —2 Of.O") |—g""' ((l‘j.’_l_ 0(0.1') 1 gr'j(d’fl"!_ U.O’k)] "
- by [g? (d' —2a0%) + g (d}/ 2 ub)].
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TEPMOVIIPYIUN AUTIOJSAPHBIM KOHTUHYVM
3. T'onyboBuy
Pe3rome

[TpeaMeTOM PAacCMOTpPEHUs SIBISETCA Teopus C y4eToM TemmnepaTypsl. Mc-
XOHOI IpPeANOChUIKOH sBIISETCS M3BECTHOe TemmepaTypHoe mouie. Jledbopmanus
KOHTHHYYMa BIIOJIHE OmpejesisieTcs AedopMallueii B KaX[10# TOYKEe 3aMOYEHHOTO
TpHeapa aupekTopa. MCmosb3ys reoMeTpPUYECKHH TIOAXO/I, BBIBEIEHBI YPaBHEHHMS
f6ananca sHeprun W auddepeHuHaIbHbBIE YPABHEHWS IBHXKeHHS. BbiBedeHBl Takxke
HeJIMHEHbIE KOHCTHTYTYTHBHbIE YpaBHEHHS, JIMHEAPU30BAHHBIE /11 M30TPOINHBIX

MaTepHaJIoB.

TEPMOEJJACTUYHU AUIIOJAPHHU KOHTUHYVYM
' 3opan [Nonybosuh
Pesume

[TpeameT pasmarpara Yy OBOM pajy je IOHALlame [MIOJAPHUX MaTepH-
jama y mosHaToM TemnepaTypHoMm mnosby. Kopucrehn reomeTpujcku npuias, mus3-
BefleHe Cy jenHauuHe GajlaHca eHepruje M JU(EepoHUMjalHe JEeAHAYUHE KpeTaiba.
Takole cy u3BejeHe HeJMHEApPHE KOHCTHTYTHBHE JeHAYMHE, KOJe Cy 3a H30T-
poriHe MaTepujajie JIMHEApU30BaHe.



