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1. Introduction

The universalization of the governing differential equations represents
one of the ways for improvement of modern analytical methods for the cal-
culation of laminar boundary layers. As a result of this procedure, which
consists of introducing a conveniently chosen set of parameters, quantities
characterizing any special problem are eliminated from the governing set of
equations and the corresponding boundary conditions. A numerical solution of
the universal equation can be found once for all and then it can be used in
any special problem of the boundary layer theory.

The idea of universal solutions is old almost as the boundary layer
theory itself. The progress of this theory is, therefore, inseparably connected
with the gradual development of the idea of universalization. Very known re-
searchers as Blasius, Howarth, Falkner, Karman, Pohlhausen, Gortler, Loit-
sianskii and others, every one in his own way, contributed to a gradual
approach to the final goal. But the problem of universalization could not
find, from the point of view of mathematical accuracy, as well as from the
aspect of successful applications of universal multiparameter methods in en-
gineering practice, its most optimal solution, until modern sophisticated com-
puters had been used in applied mathematics and mechanics.

Since the universal equations contain, as it will be seen later, summs of
terms of number of which is equal to the number of parameters, it is necessary
to limit the number of parameters at numerical integration, due to:

— the volume and the complexity of the work on the developing the
finite difference method and the corresponding of the algorithm obtained,

— the limitness of the memory of available computers and
— economy of computer-time, i. e. the duration of computers work.

That is why it is very important that the set of parameters chosen
possesses the following two properties:

1. the first parameter is to be enough “strong, so that the one-para-
meter solution lies close to the exact solution and
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2. the following parameters introduce in the solution small corrections
only, and provide the convergence to be enough fast.

From many authors (Shkadov [6], Loitsianskii [3], Saljnikov &. Oka [8],
who tried to satisfy those requirements by choosing various sets of parameters,
Loitsianskii was the most successful one. His set of parameters, as Najfeld
[5] showed, possesses both necessary properties in contrast with the methods
developed by Shkadov and Saljnikov & Oka. The two-parameter approximation
by Loitsianskii coincides almost exactly with exact solutions, excepting a small
region in the immediate neighbourhood of the separation point.

However, this method possesses a property which makes the calculations
of the boundary layer slightly difficult and absorbs much time. Namely, in
order to determine quantities, characteristic for the boundary layer, an addi-
tional integration of momentum equation in every special case is necessary.
That is why the calculation of characteristic quantities of the boundary layer
by means of the Loitsianskii’s method, carried out by Najfeld, had certain
complications and consequently absorbed much time, in contrast with the me-
thod of Saljnikov & Oka. Namely, in the method of Saljnikov & Oka there
is no need for additional integration of momentum equation. The results can
be achieved faster, but with poorer convergence. Consequently, the aforemen-
tioned property of the Loitsianskii’s method can in spite of certain advantages
prevent its acceptance by engineers in practice, who very often like to obtain
necessary results in a simple way, taking less care of the accuracy.

We think, therefore, that the further improvement of parametric methods
should be directed to the simplification of the application of universal solu-
tions, satisfying the following two conditions:

1. to use the experience gathered in the paper of Saljnikov & Oka,
concerning the efficient practical application of universal solutions and

2. to keep, if possible, the Loitsianskii’s set of parameters, providing an
unexceeded convergence so far.

The way to this goal has been partly already traced in an earlier paper
(Saljnikov [9], while in this one it has been finaly achieved.

In order to make our method as clear, and simple as possible we de-
cided to demonstrate it on the example of the classical Prandtl model of the
boundary layer. It is to be mentioned however, that from the papers cited
at the end of the abstract which represent a continuation of our investigations,
can be concluded that this method can be extended also without any principal
difficulties to the moie complex physical models of the boundary layer.

2. The universal equations of the problem considered

In an earlier paper (Saljnikov [9] it was shown that the satisfaction of
all requirements cited in the introduction can be achieved if in the equation
for the stream function ¢ (x, y) of the considered problem:
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with the corresponding boundary conditions

y=0: ¢=a¢=0;

oy
(2.2) y—> o0 %..,U(x);
9y
0
X=Xyt —¢=u‘,(y),
0y
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with the usual notations:

x — the coordinate measured along the contour from the stagnation
point,
y — the coordinate perpendicular to the contour
n — transformed nondimensional y
U (x) — free stream velocity
u(x, y) — the velocity into the direction of x
u, (y) — u(x, y) for x=x,
v — kinematic viscosity
a,, b, — arbitrary constants
@ (x, n) — transformed nondimensional stream function

The universalization of the equation (2.1) can not be, however, achieved
until the Loitsianskii’s [3] set of parameters is additionally introduced:
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which take over the role of the coordinate x in further considerations.
The first term of that set (for k=1):

d k%2
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represents the “form parameter of the generalized Karman-Pohlhausen method
and 3** is the momentum thickness defined as:
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Making use of (2.3), (2.5) and (2.6), the parameter f, becomes

B U [
(2.7) f1=£9ﬁ, _(i_fubu—l dx.
Ubo
0
It is not difficult here to conclude that, since ®=® (x, 7), the quantity
B defined as:

(2.8) B fﬂ?i(l— m)dn,
o o
0
and consequently the parameter f, also represents continuous function of x,
that is: B=B(x) and f,=f, (x).
It is interesting to note that for a,=b,=2, the Gértler’s ([1]) “principal

function** will emerge from (2.7):

fi(x) 22U
0

The same is valid for n and ®, which after substituting a,=b,=2 into
(2.3) are reduced to the corresponding quantities of Gortler’s type:

(2.10) n=vy(2vJuax)"®; @=y(2vf U]
0 0

Due to the arbitrariness of the function U (x), the set of parameters
(2.4) represents a system of independent functions, that, as shown by Loitsian-
skii ([3]), satisfy the recursion ordinary differential equation:

@11 éi,flf'k=[(k— 1)f, + kF)f+firr =B

One can easily derive it by differentiating (2.4) and introducing into the
consideration the momentum equation in the following forms:
8**’ U’ F U! Un
=y fa Pl
3** 2Uf U U

Thereby the following, in the boundary layer theory, usual notations

are used: 26/
(u
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0
From the considerations of the preceding connections, it is not difficult
to come to a conclusion, drawn already in the paper by Loitsianskii, that is
valid in this case also. Namely, since the quantities 8%, 3**, {, H* and F are

(2.12)
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all functions of the set of parameters f;, the right-hand side of the equation
(2.11), denoted by 0,, will be a function of the same kind.

Hence, we will adopt the parameters f, as new independent variables
instead of the coordinate x and perform the substitution of differentiation by
means of the differential operator:

(2.14) L . 8-

derived from (2.11). The governing system of equations (2.1) and (2.2), trans-
formed first by means of (2.3), reduces to the following universal form in

this case:
3 2 "
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Namely, since the free stream velocity U(x) characterizing every special
case of flow is really not present in this system of equations, the solution of
the differential equation (2.15), with the corresponding boundary conditions
(2.16), can be considered as universal. Thus after the numerical integration
of the system (2.15), (2.16) on a computer, solution can by used in every
special case in a way, that will be outlined in the next sections.

Therefore, the additional integration of the momentum equation, neces-
sary in the method due to Loitsianskii, becomes needless in the procedure
developed here.

3. The generalized equation of “similar* solutions (a,=b,=2)

Apart from the indisputable benefit, that the solution and its application
of the universal system (2.15), (2.16) would give, the dilemma concerning the
appropriate choice of a, and b, is unresolved so far in this paper.

In connection with this, in an earlier paper (Saljnikov [9]) an attempt
was made with a,=b,=2, what has taken our attention, at this stage of our
investigations. It was namely mentioned in the previous Section that n and ®,
given by (2.3), are reduced for a@,=b,=2 to the known transforms of Gort-
ler’s type (2.10). Thereby f,/B? coincides with the “principal function* { (x)
(2.9), while x remains unaltered.
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Since n (2.10) coincides for U (x)=cx™ with the known variable of the
“similar* solutions:
L 1) oy —1

(3.1) _ [t D) exm

2v &

the quantity (2.10) can be considered as a generalized variable of these solu-
tions. The generalized “similar* solutions theirselves, represented by the non-
dimensional stream function ® (x, n) (2.10), are determined with the correspon-
ding differential equation:
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that can be obtained by the substitution of a,=b,=2 into the equation (2.15).

In the one-parameter approximation (for f,#0; f,=f;=- -+ =0; 6, =F® f))
from (3.2) follows:
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that after the “localization® in regard to f,, that is after the application of
the condition 0 /0 f, =0, reduces, taking into account (2.9), to the known Falk-
ner-Skan equation of “‘similar* solutions:

(3.3)

(3.4) QU = — B () =
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The notation (1) is referred to the one-parameter solution, and (1/2) to
the one-parameter localized solution, that we will call half-parameter solution.

Thereby following boundary conditions emerge from (2.16):

n= 0: oM = A =,
o
(1
3.5) pwor 2y
| o
fi=fy=+++=0: ©®O=0,

which are valid for both equations (3.3) and (3.4).

It is to be mentioned here that the equation (3.4) was first derived and
numerically solved by Hartree.

Hence, it can be concluded that (3.2) can be regarded as a generalized
Falkner-Skan equation. On the other hand, however, the presented way of
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universalization and the values a,=b,= 2 offer obviously a possibility for a new
interpretation of the equation (3 4). It can be, namely, considered as an uni-
versal equation of the boundary-layer in the one-parameter localized approxi-
mation. Therefore, the comparison of its solution, that is of the known results
by Hartree, with the solution of the full one-parameter equation (3.3), would
give an idea about the alterations caused by the “localization* in regard to f;.

For this purpose the numerical integration of the equation (3.3) with
the corresponding boundary conditions (3.5) was performed on a computer.
The method by Simuni & Terentiew ([7]), previously developed for the nume-
rical integration of the one-parameter universal solution of Loitsianskii, was
used. In the meantime the method was successfully adapted for equations of
similar type, obtained during our investigations, showing a satisfactory, stabi-
lity, that was noticed earlier.

We cite here the calculated results, some of which have been shown in
a previous paper (Saljnikov [9]), due to the more complete and more syste-
matic review of various solutions, obtained by related methods. Namely, we
compare them with the one-parameter-localized solution, i. e. with the half-
-parameter solution by Hartree with the one-parameter solution by Loitsianskii,
as well as with our recent results, that will be discussed in the next section.

For a better clearness, we introduce the notations, that will be persis-
tently used in the table T-1 of universal values of characterised quantities and
in all diagrams. The quantities, e. g. the curves noted by:

L (1) — are referred to the one-parameter solution by Loitsianskii ([3]);

H (1) — are referred to the one-parameter solution of the equation (3.3),
(Saljnikov [9]);

H(1/2) — are referred to the Hartree’s solution of the Falkner-Skan equation
(3.4);

S (1) — are referred to our one-parameter solution (a,=0.4408; b,=5.714),

S(1/2) — are referred to our one-parameter localized, e. g. half-parameter
solution (a,=0.4408. b,=35.714);

T — are referred to the exact solution by Terrill ([13]).

It is to be mentioned that the solutions noted with S (1) and S(1/2),
that actually represent basic results of our investigations, will be considered
in continuation.

The universal characteristic functions £, H* and F are given in the table
T-1 and in the diagram in Fig. 1. It can be noticed that, they almost coin-
cide for all three one-parameter solutions (L (1); H(1); S(1)), as well as for
two half-parameter solutions, with the exception of the neighbourhood of the
separation point and the stagnation point, where the corresponding results are
still close enough. Such results are the consequence of the similarity of the
corresponding universal equations. The equations of Loitsianskii and (4.3), i. b.
(3.3) belong, namely, to the same type of differential equations and can be
reduced from one form to another by suitable transformations. Therefore, from
the behaviour ot the functions {, H* and F very little can be concluded about
the accuracy and the convergence, that are reached in the practical use of
these methods. Something more can be said about that, however, when one

10 Mehanika 4
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applies the various universal solutions from the table T-1 to a concrete prob-
lem of the boundary layer.
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For this purpose the potential incompressible flow about a circular cylin-
der will be used. For this case, namely, Terrill ([13]) obtained a solution by
the finite difference method, carrying out the direct numerical integration of
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the corresponding boundary layer equations. Considering this solution as an
exact one, Loitsianskii ([3]) compared his results with it. It seems to us there-
fore that it will be suitable to test various methods just on that example.
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The corresponding velocity

(3.6) U(x)=2 U, sin (x/R)
by means of:
3.7 B =2 W X R=x"; U*=LU,,

reduces to the nondimensional form:

(3.8) U*=sinx’

147

For this flow, the nondimensional quantity (0u’/0y"), characterizing the
skin friction, and three first form parameters-f,, f,, f, have been calculated.
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The following relations have been introduced at this:

(3.9) u=ufUs; ¥ =y (Re)'?|R,; Re=U,R/v"

Beginning with the formula (2.13) for { and introducing the transforms
(2.3), the momentum thickness 8** (5.3) and relations (3.7), (3.9). a general

formula has been obtained:

by
+2

1
T (af @t ax)”
0

@'’ (0) has been introduced instead of (0> ®/d%?),_, in (3.10) and that will

be used in this paper in what follows.

10*
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Entering the velocity distribution U* (3.8) in the (3.10), the last expres-
sion becomes suitable for the chosen example, whereby the calculation has
been carried out for the case considered (a,=b,=2). The values ®" (0), refer-
ring to the corresponding universal solutions denoted by H (1) and H{l12),
are determined from the table T-1 by the procedure, to which a special atten-
tion in the Section 5 will be given.

The obtained results are shown in Fig. 2, whereby the neighbourhood
of the separation point is given in a larger scale in Fig. 3. For the compari-
son, the corresponding results by Loitsianskii — L (1) and the exact solution
by Terrill — T are plotted in the same diagrams.

The calculation of the parameters f,, f>, f; has been made by means of
(2.7), (2.4) and (2.5). The first parameter has been determined, by means of
(2.7) (for a,=b,=2) from the table T-1, by the procedure, already mentioned,
about which will be said more in the Section 5. After that, by a combination
of the formulae (2.4), (2.5), the expression for:

- dkU( f, \k
(3.11) f._UH-—-(-‘—---); k=1, 2,...00,
‘ dxk \dU|[dx N
has been obtained, from which (for k=2, 3) follow:
d? U/dx? d? U/dx?
(3.12) =U - (f) il 3,
5=V g P 5T G O

Introducing the adopted expression for U (x) (3.6), the final formulae
for f, and f, has been obtained from (3.12). Thereby, the previously calcula-
ted values of the parameter f, have been used.

The obtained results are shown in Fig. 4, whereby the corresponding cur-
ves by Loitsianskii are plotted for comparison.

We next consider the distribution (du'/0y’),—o denoted by H(l) and
H(1/2) on the diagrams in Fig. 2 and 3. It can be concluded that the full
one-parameter equation (3.3) of <‘similar solutions gives more accurate results
than the Falkner-Skan equation (3.4), what should be expected due to the
performed localization.

On the other hand, however, from the comparison of the curves H (1),
L(1) and T it follows that in spite of the certain improvement of accuracy
regarding to Hartree’s half-parameter results H(1/2), one-parameter “‘similar
solutions H (1) fall in regard to the exact values by Terrill — T, behind the
corresponding results due to Loitsianskii — L (1). From further considerations
it will be seen, that the reason for that is the unsatisfactory ‘strong® first
parameter of the adopted set.

The remaining requirements, however set in the introductory considera-
tions, have been fulfilled already in the first attempt (a,=b,=2). Namely,
the distribution of f;, f5, f; (see the diagram in Fig. 4) shows that the con-
vergence of H(1) is enough fast. The character of the alterations of the cor-
responding parameters similar as in case by Loitsianskii — L (1) speaks in
favour of that. This conclusion is even uninfluenced by the fact, that all three
parameters fail near the stagnation point. They tend there, to infinity, and
as a consequence, as seen from (3.12), an unsuitable behaviour of the first
parameter f, in this region.
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It is to be emphasized that the property of the method, that represents
the main goal in these investigations, concerning the superfluousness of the
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integration of the momentum equation, has been already provided in this
attempt (@,=b,=2). The additional integration has been actually avoided,
because the first parameter (2.7) itself, by means of which the universal
solutions from the table T-1 are used for the calculation of the boundary
layer, as it will be seen in the Section 5, can be considered as a result of
the formal integration of the momentum equation (2.12) in the form:

d UI Uff
—L — F+ fl ’
dx U U’
with the following characteristic function:
5 2UB’
(313) F:aoBkﬁb"‘ﬂ-]—_U'éfﬁ'

It obviously follows from these considerations that further investigations
should be directed to a strengthening of the first parameter, what would ful-
fil the last remaining requirement.

4. The determination of optimal values of the constants a;, and b,

The behaviour of the function F (3.13) has been considered for this
purpose. It reduces by means of (2.14) to the following universal form:
Z = 0B
4.1 F—=a,B*—b,f +— 0, —,
( ) 0 0/1 B kZ_:i k @fk
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namely, the behaviour of its one-parameter approximation (f, #0; f,=f;= -+ =0;
61 = F(l)f]) 1s
(4.2) F(f)=FO = a4y B*—byf, ,
' - 2] 0B
B of,

that shall be used in the following considerations.

Integrating numerically the universal equation (2.15) in one-parameter
approximation:

03 oM
orn? _

0 d)\2
) ) ]—

| 2 (1)
+ B -p o0 SO AT
2B ot | B
FOf 10D 02 dO  ddh 02 O
B2 ( on 0 0f, of, on? )

with the corresponding boundary conditions (2.16)

(4.3)

(1)
0N
(m
(4.4) AT LT
0
f1:f3:°":0: (D(l)=q)0,

whereby the already mentioned method by Simuni & Terentiew [7] has been
used, it has been concluded that F simultaneously calculated by means of
(4.2), changes only slightly with a, and b,. It follows from that fact, already
noted and explained in the previous Section, that F() is almost independent of
a, and b,. The behaviour of the parameters f; and consequently the accuracy
given by the universal solution in the neighbourhood of the separation point
depend on them, however. It is to be noticed here again, that the solution
with a,=b,=2, although methodologically interesting because it represents a
generalization of the ‘“‘similar solutions, did not give expected results, as we
have seen in the previous Section.

That is why the optimal values of a, and b,, by means of which the uni-
versal solution of the system (4.3), (4.4) would give the furthest possible approach
to the exact results, are to be found. We succeeded to find them combining
two facts. The first one is, that we can consider the distribution of function
F® independent on @, and b,. In other words, F® can be determined for
any pair of @, and b, and be considered as known in what follows. The other
fact, however, results from the way in which the numerical integration of
(4.3), (4.4) is performed by the cited finite difference method. One starts,
from the value f;=0, defining the Blasius problem of a flat plate. The cor-
responding solution @, is determined in that point, that in accordance with the
Jast boundary condition (4.4) represents the initial value for further integration.
Thereby, the integration is performed, as shown by arrows on the diagram
in Fig. 1, either in the direction of successive growth of positive values of the
parameter f, (f,>0), i. e. toward the stagnation point, or in the direction of
successive growth of its negative values (f,<<0), i. e. toward the separati on point.
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With in regard to this method of integration, it is appropriate to choose tho-
se values of a, and b, by which the position of the tangent (see the diagram on
the Fig. 1) on the curve F(f;) in the point f;=0 is defined. Such a conclu-
sion is led by the fact, that Loitsianskii [3] developed the procedure of the
before mentioned additional integration of the momentum equation, starting
with F® in the form:

(4.5) F(f)=a-bf+e(f),

where =(f,) expresses the deviation of the function FM from the linear one,
determined by the tangent in the point f,=0. It is to be mentioned that the
corresponding values of the constants a and b have been determined in the
same paper from a series in terms of f, for the function F. It follows, namely
from this series taken in one-parameter approximation in the point f;=10 that:

(4.6) a=0.4408; b=5.714.

As expected, we are getting the same results using the table T-1 also,
when calculating for the cases denoted by L (1) and H(1) the corresponding
quantities F(0) and (dF"V/df,),, whose numerical values are therefore:

4.7) F (0) = 0.4408; (dFM/df),= —5.714.
Since on the other hand, from (4.2) we have:
(4.8) F (0)=a, B (0)*; (dF™/df,), = 4 a, B(0) (dB/df,),— by,
we obtain by the comparison of (4.7) and (4.8):
(4.9) a,=0.4408/B (0)*
(4.10) b,=5.714 + 4 a, B(0) (dB/df)),.

Making use of the relations (4.9), (4.10) it can be concluded that by
the choice of a, and b, a normalization of B(0) and (dB/df)),, defining the
form and the position of the curve B(f)) in the initial point of integration
f,=0, is made at the same time.

The former investigations, performed for various values of a, and by
showed that the optimal results, in the sense of the requirements, set earlier,
are reached, as it will be seen in the next Section, with:

(4.11) a,= 0.4408; b,=5.714.

It is to be mentioned that the testing of various solutions has been car-
ried out on the example of the flow around a circular cylinder, adopted ear-
lier for this purpose, in the way shown in the Section 3.

Therefore, choosing optimal values of the constants a,; b,, we stopped
at the values (4.11), that obviously coincide with the constants a; b (4.6) and
that we adopt for further work.

In this connection it is to be reminded that in the Section 3 of this
paper, in order to generalize the equation of “‘similar** solutions, a,=2 has
been adopted. The value B(0)=0.4694 follows then from (4.9), that can be
easily noticed on the curve B(f,) denoted with H (1) in Fig' 6. Since here,
however, a,=0.4408 has been adopted, the quantity B(0) is normalized as
B(0)=1, what can be immediately verified on the curve B(f,) denoted with
S(1) in Fig, 7.
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Ji —0.0852(—0.0800[—0.0700—0.0681{—0.0600|—0.0500|—0.0400|—0.0300{—0.0200(—0.0100
L) 0.0000{ 0.0397| 0.0746 0.1015| 0.1249| 0.1462| 0.1662| 0.1851] 0.2034

H (1) 0.0000| 0.0385| 0.0737 0.1007| 0.1242| 0.1456] 0.1656| 0.1846] 0.2028
C|H1/2) 0.0000| 0.0645] 0.1014] 0.1306| 0.1561| 0.1791| 0.2005
S 0.0000{ 0.0383| 0.0737 0.1007| 0.1242| 0.1456| 0.1657| 0.1847] 0.2029
S(1/2) 0.0000| 0.0646| 0.1015] 0.1307| 0.1562{ 0.1792| 0.2005
L(l) 3.8150| 3.4410] 3.2051 3.0575| 2.9458| 2.8538| 2.7754| 2.7063| 2.6441

H () 3.7477| 3.4543| 3.2134 3.0638| 29510, 2.8587| 2.7798| 2.7105| 2.6484
H*\H(1/2) 4.0300| 3.3597| 3.1140| 2.9560| 2.8373| 2.7416| 2.6612
S(1) 3.7785| 3.4562| 3.2138 3.0639| 2.9508| 2.8583| 2.7794| 2.7101] 2.6479
S(1/2) 4.0300| 3.3586| 3.1133] 2.9555| 2.8367| 2.7410| 2.6607

L (1) 0.9909| 0.9500| 0.8779 0.8099| 0.7444| 0.6807| 0.6189| 0.5585| 0.4997

H (1) 1.0012) 0.9575| 0.8800 0.8108| 0.7447| 0.6807| 0.6186] 0.5578| 0.4985
FH(1/2) 0.8210| 0.7723| 0.7142| 0.6576| 0.6024| 0.5428| 0.4942
S 1.0116| 0.9659| 0.8847 0.8124| 0.7452] 0.6809| 0.6185 0.5579| 0.4988
S(1/2) 0.8210| 0.7722| 0.7143] 0.6578 0.6026| 0.5480| 0.4942

H (1) 2.0289| 1.8555| 1.7013 1.5981| 1.5158| 1.4450 1.3816| 1.3233] 1.2686

4 |HA/2) 2.3590| 1.9183| 1.7254| 1.5885| 1.4774| 1.3814] 1.2954
S (D) 3.8279{ 3,5026| 3.2457 3.0865| 2.9663| 2.8684| 2.7853| 2.7130| 2.6490
S(1/2) 3.9163| 3.3147| 3.0696| 2.9164| 2.8052| 2.7189| 2.6493

H (1) 0.5411| 5.5371] 0.5294 0.5216/ 0.5137| 0.5055| 0.4970( 0.4882| 0.4790

B |H(1/2) 0.5852| 0.5710| 0.5541| 0.5374| 0.5207| 0.5039| 0.4868
S(1) 1.0156| 1.0134| 1.0100 1.0074| 1.0052| 1.0035] 1.0021| 1.0011] 1.0004
S§(1/2) 0.9902| 0.9869| 0.9860| 0.9868| 0.9889| 0.9919| 0.9957

. H(L) 0.0110| 0.0717| 0.1393 0.1931| 0.2418| 0.2881| 0.3333] 0.3782| 0.4234
SIHA/2) 0.0000| 0.1130{ 0.1830{ 0.2431| 0.2998| 0.3555| 0.4118
- S(1) 0.0029| 0.0378| 0.0730 0.1000[ 0.1236| 0.1451| 0.1653| 0.1845| 0.2028
S(1/2) 0.0000| 0.0655| 0.1029] 0.1325| 0.1579] 0.1807| 0.2014

H (1) |—0.2903(—0.2773|—0.2497 —0.2205|—0.1895|—0.1565[—0.1215|—0.0839|—0.0436

o |H(1/2) —0.1988|—0.1840{—0.1629|—0.1385[—0.1106{—0.0788|—0.0422
|5 (1) |—0.0827|—0.0779|—0.0686 —0.0591{—0.0495|—0.0397|—0.0299|—0.0199|—0.0100
S(1/2) —0.0694|—0.0616|—0.0514|—0.0411{—0.0307|—0.0203|—0.0101
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T-1

0.0000 | 0.0100 | 0.0200 | 0.0300 | 0.0400 | 0.0500 | 0.0600 | 0.0700 | 0.0800 | 0.0854
0.2204 | 0.2375 | 0.2542 | 0.2706 | 0.2868 | 0.3028 | 0.3188 | 0.3348 | 0.3510 | 0.3601
0.2204 | 0.2376 | 0.2543 | 0.2707 | 0.2869 | 0.3038 | 0.3189 | 0.3349 | 0.3512 | 0.3594
0.2204 | 0.2393 | 0.2574 | 0.2747 | 0.2913 | 0.3073 | 0.3228 | 0.3378 | 0.3524 | 0.3592
0.2205 | 0.2376 | 0.2543 | 0.2707 | 0.2869 | 0.3030 | 0.3189 | 0.3349 | 0.3511 | 0.3600
0.2205 | 0.2394 | 0.2574 | 0.2747 | 0.2913 | 0.3073 | 0.3228 | 0.3378 | 0.3523 | 0.3600
2.5919 | 2.5384 | 2.4903 | 2.4449 | 2.4014 | 2.3599 | 2.3196 | 2.2802 | 2.2403 | 2.1730
2.5919 | 2.5397 | 2.4910 | 2.4452 | 2.4017 | 2.3580 | 2.3197 | 2.2801 | 2.2401 | 2.2084
2.5919 | 2.5308 | 2.4763 | 2.4270 | 2.3821 | 2.3409 | 2.3029 | 2.2676 | 2.2347 | 2.2060
2.5913 | 2.5391 | 2.4904 | 2.4446 | 24011 | 2.3594 | 2.3190 | 2.2794 | 2.2397 | 2.2154
2.5913 | 2.5303 | 2.4757 | 2.4265 | 2.3817 | 2.3405 | 2.3026 | 2.2674 | 2.2347 | 2.2154
0.4408 | 0,3847 | 0.3293 | 0.2750 | 0.2219 | 0.1701 | 0.1197 | 0.0708 | 0.0239 | 0.0000
0.4406 | 0.3841 | 0.3289 | 0.2745 | 0.2214 | 0.1671 | 0.1196 | 0.0707 | 0.0233 | 0.0000
0.4408 | 0.3879 | 0.3357 | 0.2838 | 0.2320 | 0.1805 | 0.1292 | 0.0781 | 0.0272 | 0.0000
0.4409 | 0.3844 | 0.3290 | 0.2748 | 0.2218 | 0.1699 | 0.1194 | 0.0704 | 0.0233 | 0.0000
0.4410 | 0.3881 | 0.3357 | 0.2838 | 0.2320 | 0.1805 | 0.1292 | 0.0781 | 0.0270 | 0.0000
1.2166 | 1.1661 | 1.1167 | 1.0673 | 1.0171 | 0.9623 | 0.9090 | 0,8456 | 0.7607 | 0.6540
1.2166 | 1.1428 | 1.0729 | 1.0057 | 0.9403 | 0.8762 | 0.8124 | 0.7484 | 0.6831 | 0.6421
2.5916 | 2.5401 | 2.4935 | 2.4513 | 2.4134 | 2.3800 | 2.3516 | 2.3302 | 2.3212 | 2.3261
2.5917 | 2.5431 | 2.5015 | 2.4655 | 2.4341 | 2.4064 | 23817 | 2.3596 | 2.3396 | 2.3261
0.4694 | 0.4591 | 0.4483 | 0.4365 | 0.4235 | 0.4081 | 0.3919 | 0.3709 | 0.3396 | 0.2946
0.4694 | 0.4516 | 0.4333 | 0.4144 | 0.3947 | 0.3743 | 0.3528 | 0.3300 | 0.3057 | 0.2917
1.0001 | 1.0004 | 1.0012 | 1.0027 | 1.0051 | 1.0087 | 1.0140 | 1.0222 | 1.0364 | 1.0500
1.0001 | 1.0051 | 1.0104 | 1.0161 | 1.0220 | 1.0281 | 1.0344 | 1.0407 | 1.0469 | 1.0500
0.4696 | 0.5174 | 0.5673 | 0.6203 | 0.6776 | 0.7444 | 0.8139 | 0.9031 | 1.0341 | 1.2199
0.4696 | 0.5300 | 0.5940 | 0.6628 | 0.7379 | 0.8210 | 0.9150 | 1.0237 | 1.1529 | 1.2314
0.2205 | 0.2374 | 0.2537 | 0.2693 | 0.2841 | 0.2978 | 0.3102 | 0.3207 | 0.3268 | 0.3428
0.2205 | 0.2382 | 0.2548 | 0.2703 | 0.2850 | 0.2989 | 0.3121 | 0.3246 | 0.3365 | 0.3428
0.0000 | 0.0474 | 0.0995 | 0.1575 | 0.2230 | 0.3002 | 0.3907 | 0.5089 | 0.6937 | 0.9839
0.0000 | 0.0490 | 0.1065 | 0.1747 | 0.2567 | 0.3569 | 0.4821 | 0.6427 | 0.8561 | 1.0036
0.0000 | 0.0099 | 0.0199 | 0.0298 | 0.0395 | 0.0491 | 0.0583 | 0.0669 | 0.0744 | 0.0774
0.0000 | 0.0099 | 0.0196 | 0.0291 | 0.0383 | 0.0473 | 0.0561 | 0.0646 | 0.0730 | 0.0774
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Choosing the constant b,— 2 (in the Section 3), it follows from (4.10):
(dB/df,),— —0.9890, what can be easily verified on the curve B(f,) denoted
with H(1) in Fig. 6 and in the table T-1. In this Section, however, with regard
to the adopted value b,— 5.7140, the slope of the curve B(f,) has been nor-
malized by means of (4.10) to be: (dB/df,),=0, what can be also verified on
the curve S(1) in Fig. 7.

With the adopted values a,-0.4408 and b,=5.7140 the numerical integ-
ration of the system (4.3), (4.4) has been performed, whereby the obtained
results, denoted by S(1), are given in the table T-1 and in the form of a
diagram in Fig. | and 7. The same system has been in addition integrated
in the one-parameter localized approximation (9 /df, =0). The corresponding
results denoted by S(1/2) are given in the table T-1 and shown in Figs. 1
and 7. It can be noticed that the characteristic functions , H* and F, de-
noted by S(1) on the diagram in Fig. 1, coincide with the corresponding
curves L (1), H(l), as expected. It is also valid for the curves denoted by
S (1/2), that coincide with the corresponding curves H (1/2) on the same diagram.

5. The efficiency of the obtained universal solution and its practical
application

Before we show the procedure for practical use of the universal solution,
obtained in the preceding Section, we will consider its quality from the point
of view of the requirements, set in the introduction. For this purpose the flow
around a circular cylinder, as in the Section 3, will be used.

Since the behaviour of the first parameter f;, as seen from the previous
considerations, is of the primary importance for obtaining better results, we
will consider first its distribution along the contour, especially near the sepa-
ration point.

The calculation of the parameter f, has been carried out making use

of the relation:
X

(5.1 -fl:g‘iben“ dx (for a0_0.4408),
B Ub b,=5.7140
0
that follows from (2.7). It is to be mentioned that (5.1) plays a leading role
in making a connection between the universal solutions, illustrated by the table
T-1, and the special data of every concrete flow, expressed through the free
stream velocity U (x).

In the case considered, after substituting (3.6) into (5.1), the left-hand
side of (5.1), i. e. (f;/B?)y, for x=1x,, is calculated. The corresponding value
of (f,), is then determined from T-1. From the obtained distributions, denoted
by S(I) and S(1/2) in Fig. 4, can be concluded that in comparison with the
previous results, denoted by H(1) and H(1/2), the quality of the first para-
meter f, has been considerably improved. That can be seen from its behaviour
near the separation point (x, = 1.823), that, as known, represents a singular
point of the boundary layer equations. The absolute values of the ordinates
of the curves S(1) and S(1/2) increase much slower in approaching the se-
paration point, than the curves H(1) and H(1/2), that tend to infinity.
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Since the curves S (1) and L (1) coincide on the same diagram (see Fig. 4),
it is to be expecied that the results obtained in this paper in one-parameter
approximation will be at least as good as the results by Loitsianskii. In order
to check it the nondimesional skin friction (0u’/0y")y’ =0 has been calculated.
Thereby, (3.10) with (3.8) and a,—0.4408; b,=5.714 have been used. The
corresponding values of ®'’(0) have been then determined from T-1 from the
solutions denoted by S (1) and S(1/2). The calculated distributions of (du'/0y"),
denoted by S(1) and S(1/2) have been plotted on the diagram in Fig. 2,
whereby the neighbourhood of the separation point has been shown in a lar-
ger scale on the diagram in Fig. 3. It can be seen that the position of S(I)
and S(1/2) with regard to the exact results by Terrill — T, is much more con-
venient than the position of H (1) and H(1/2). It is to be emphasized, however,
that a considerable improvement can be noticed in comparison to the curve
L (1) also, from which not only the results S (1), obtained in the one-parame-
ter approximation, are more accurate now, but also the results S(1/2) calcu-
lated by means of the one-parameter localized solution, excepting an immediate
neighbourhood of the separation point. The position of the separation point,
defined as known by the intersection of (du'/0y’),—0 =f(x") with x'-axis and
denoted by P, is determined in the case of L (1) by: x,’=1.770 and in case
S (1) by: x,’=1.789. It is to be reminded here that Terrill obtained x,"=1.823,
that can be considered as an exact value.

All that speaks for the benefit of the fact that by the choice of optimal
values of the constants: a,— 0.4408; b, =5.714 the first parameter f; has become
considerably “‘stronger and that the results calculated on the basis of the
corresponding universal solution in the one-parameter approximation S(l), in
view of practical applications, can be considered as almost exact.

After such a conclusion, it is reasonable to expect due to (3.12) that
the distributions of the following two parameters f, and f; will be also improved.
Considering the curves f, (x’) and f; (x"), calculated by means of (3.12) and deno-
ted by S(1) and S(1/2) on the diagram in Fig. 4 and from their comparison with
the corresponding curves denoted by H (1) and H(1/2), follows that our ex-
pectations have been true. Namely, the absolute values of the ordinates of
the curves S (1) and S(1/2) increase much slower by approaching to the se-
paration point (x," = 1.823), than the ordinates of the curves H (1) and H(1/2),
that tend to infinity. Thereby while a slight discrepancy in the curve S(1/2)
can be noticed comparing with L (1), the curves S(1) and L (1) fully coincide.
Therefore, the parameter f, changes absolutely at both curves in the limits
0-0.15, and the parameter f, remains along the whole contour very close to
zero, excepting the neighbourhood of the separation point, where gradually
increases to the value given by 0.0125. Such a behaviour of f, and f; provi-
des the existence of the so named physical convergence to the solution of
Loitsianskii [3], which is fast enough, as seen from his two-parameter results.
That is why the same property of the solution of the system (2.15), (2.16)
should be conjectured.

The results by Mirgaux [4], who determined the solution of this system
in the two-parameter approximation and applied it to the flow around a
circular cylinder, speak for the benefit of that. Namely, the distribution of
(0u’']0y)y o, in spite of some insignificant simplifications introduced by the
numerical integration, almost does not differ from the exact results by Terrill
along the whole contour of the cylinder, excepting the immediate neighbourhood
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of the separation point. Thereby, the position of this point is determined by
.}'p’: 1.815. Its value, obtained by the two-parameter solution by Loitsianskii,
is however: x,’=1.833. The discrepancy of the Mirgaux’s result (x"=1.815)
from the Terrill’s one (x,”=1.823) is: x,"= —0.008. In the case of the Loit-
sianskii’s result (x,”=1.833) we have: x,"=0.0.10.

. Since the former results in this Section are based on the flow around a
circular cylinder, an interesting and at the same time a natural question arises
con_cerning the quality of the obtained universal solution in case of its appli-
cation to the contours that are relatively slender than a circular one and that
would be more close to the real airfoils.

fLf,

0,1

FIGURE 5

As an answer to this question the results of Ivanovi¢ [2], can be used
who calculated the boundary layer on elliptic contours for various ratios of
their halfaxis k=b/a. From the distributions of (0u'[0y")y—o=1(x"), calculated
by Ivanovi¢ follows, that the character of the mutual position of the curves,
corresponding to the individual universal solutions in the table T-1, is not
changed considerably with the decrease of k, comparing with the flow around
the circular cylinder (see Fig. 2 and 3). In other words, the order of the cur-
ves in the neighbourhood of the separation point remains unaltered independently
of k, that is: H(1), L(1), S(1) in the direction of x’. A change in the posi-
tion of an exact solution, that could be in principle found by the procedure
similar to that by Terrill, should not be expected also. That is why the order
of individual universal solutions in the one-parameter approximation can be
supposed with the great certaintly to be the same as in the case of flow
around a circular cylinder.

The distributions of the first parameter f,, calculated by Ivanovic¢ for
various values of k and shown on the diagram in Fig. 5 speak for the benefit
of that. It can be seen, from their behaviour that not only the character of
the absolute value of f, is similar for various k, but the values of f, in the



A contribution to universal solutions of the boundary layer theory 187

separation point, determined in the one-parameter approximation and denoted
by P, do not differ (for k=1; 1/2; 1/4: f,,= —0.085). It points out that the
“strength* of the parameter f, is independent from the slenderness of the
profile and confirms at the same time the assumption concerning the steadiness
of the quality of the corresponding one-parameter solution.

This conclusion does not hold for the parameters f, and f; any more.
From the same diagram (see Fig. 5) follows, that the absolute values of f, and
fy, in spite of the similar character of their distributions, increase with the
decrease of k. For example for k=1: f,,= —0.150 for k=1/2; f,,= —0.190;
fork=1/4: f,,= —0.350. It points out to a certain deterioration of the phy-
sical convergence, that takes place with the decreasing of the thickness of the
contour, that is with the increase of its slenderness. This phenomenon should
be expected with regard to the known similar behaviour of the series solutions
of the boundary layer theory. It does not become evident, however, until the
universal solution in the two-parameter approximation is applied, that due to
the high quality one-parameter approximation is almost unnecessary from the
practical point of view.

We will present now jhe procedure for the practical use of the universal
solutions from the table T-1. Thereby the solutions H(1/2), H (1), S(1/2),
S (1) are meant, for which the additional integration of the momentum equa-
tion in contrast to the solution L (1) is not necessary.

Starting with the formulae for:
— the displacement thickness 3* (2.13)

— the momentum thickness 3** (2.6) and
— the skin friction

ou
(5'2) TW:E‘L(‘__) ’
'f)y y=0

where u is coetficient of dynamic viscosity, one obtains after employing the
transforms (2.3):

(a'O vf Ubo—1 a’x)”2 %
e O A with A=f(1_‘3_q’)dm
[ —bol2 p
0
(ao va”ﬂ“ dx)”z co
(5.3) SH* — 0 B with B—f_aq_)(] _ __()E)dﬂq;
Ubﬂfz On 0.’]
0
by
1+
U 2
T, = a " (0),

(aﬂvofo”" n’.\r)”2

By the calculations of the usual characteristic quantities of the boundary
layer the free stream velocity U (x) is introduced into (5.3), while the values
of the constants a,; b, are fitted with the corresponding universal solution. It
is to be reminded here that a,=b,~= 2 have been adopted for the solutions deno-
ted with H(1/2) and H (1), and a,=0.4408, b —=5.714, for §(1/2) and S(1).
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The corresponding values of A, B and @' (0) are determined from the
table T-1 by means of (5.1), after the constants a,; b, are fitted in it also.
Into the right-hand side of (5.1) the free stream velocity U (x) is introduced
first in order to calculate the numerical value of (5.1) for given x=x,. The
left-hand side of (5.1) (f,/B?), is determined in this way also, by means of
which the corresponding values (f,),, 4,, B, and [®" (0)], are easily determi-
ned from the table T-1 (see the following principal scheme.

The diagrams in Fig. 6 and 7 can be used as a kind of nomograms for
(f)y> A,» B, and [®"'(0)], on the basis of (f/B?), in case when a special
accuracy is not necessary, in order to obtain approximate values fast. This
procedure is shown on both diagrams (see Fig. 6 and 7) in a schematic way.

Namely, beginning with the ordinate, corresponding to the given value of
(f,/B?),, a straight line parallel to the f, — axis is drawn first (follow the
direction denoted by arrows on the diagrams) to the intersection with the
distributions of f,/B> denoted with H(l) and H(1/2) (see Fig. 6), namely
with the corresponding distributions denoted with §(1) and S(1/2) (see Fig. 7).
The straight lines parallel with the ordinate axis are drawn afterwards from
these points. They intersect the corresponding distributions B, ®’'(0) and A4
and determine the desired values of (f)),.

w
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1
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|
1
!
1
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Drawihg lines parallel with f, — axis from the intersections with the men-

tioned distributions, the remaining quantities 4,, B, and [®"" (0)], are deter-
mined for the universal solutions H (1) and H(1/2) in Fig. 6 and for S(I)
and S(1/2) in Fig. 7.

After substituting these quantities into (5.3), no matter how they are
obtained — by using the table T-1, or graphically from the diagrams in Fig. 6
and 7, the desired quantities 8% (x,), 8**(x,) and 7, (x,) are finaly easily cal-
culated.
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6. Conclusions

From the previous Sections follows that all demands, stated at the be-
ginning of this paper to the parametric method of Loitsianskii’s type for the
solution of various problems of boundary layer theory have been fulfilled in
a satisfactory way. Originating from their basic ideas, but introducing more
appropriate variables, a slightly different procedure has been developed, that
makes prossible to calculate the characteristic quantities of the boundary layer
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" FIGURE 6

very fast, efficiently and accuratly enough, using thereby exclusively the table
T-1 and the ready formulae (5.3). Using the diagrams in Fig. 7 in the role of
nomograms, makes these caculations more efficient and simple, when less pre-
cision is expected from the results, as shown in the preceding Section. All
that makes that the method by Loitsianskii [3], improved in this paper, be-
comes in comparison with other known analytical procedures more accessible
and acceptable for the application in engineering practice.

Namely, by the procedure used by Terrill [13] for the flow around a
circular cylinder, the boundary layer for any other flow can be calculated
very accuratly without any doubt. This way, however, regarding the numerical
integration in every special case is neither economical, nor simple at frequent
applications, in contrast, with the procedure proposed here. This fact becomes
especially apparent when characteristics of the boundary layer in a section
determined by x=x, are to be calculated accuratly, whereby the prehistory
of the boundary layer is not especially interesting.

It is to be mentioned here that the proposed procedure can be success-
fully used at an experimentally given free stream velocity also, what is of
particular interest for engineering practice. In this case one should form an
interpolation polynomial on the basis of experimental data and apply the
procedure presented here for the characteristic quantities of the boundary layer.
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The results obtained on the basis of the one-parameter localized solution
S (1/2) are especially characteristic for the accuracy of the procedure. It can
be seen, in Fig. 2 and 3 that the results, obtained by means of this solution
approach the exact values T on a large part of the skin friction distribution,
differing thereby insignificantly from the one-parameter curve S(1). On this
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FIGURE 7

part the results S(1/2) are better not only from the corresponding distributi-
ons H (1/2) and H (1), what should be expected regarding the analysis carried
out, but from the results denoted by L (1), what could be surprising at the
first sight. Of course the immediate neighbourhood of the separation point,
where the curve L (1) approaches a little better to T, than S(1/2); is to be
excluded here.

The reason for the improvement of one-parameter results in comparison
with the corresponding results due to the method by Loitsianskii [3] should
be probably sought in the basic difference between both procedures, expressed
through the distinct ways of integration of the impulse equation (2.12). In
our case, the additional integration of the equation (2.12) has been fully avoi-
ded by the appropriate choice of the transformations (2.3), because the form
parameter (2.7) itself can be regarded as the result of a formal integration
of the impulse equation, as mentioned before. The calculation of the charac-
teristic function F in the course of numerical integration (by means of (4.2)
in the case of the one-parameter approximation, for example) has been reached
in this way. The determination of the function F® performs, therefore, auto-
matically, parallel to the solution of the system of universal differential equa-
tions. In contrast with that, the integration of the impluse equation performs
additionally, namely, for every special case of flow in the method by Loitsi-
anskii [3]. Thereby, the function F is supposed in the form of (4.5), where
the correction =(f,) represents the deviation of the real distribution from the
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linear one. It is to be noted that also the corresponding procedure proposed
for the integration of the impulse equation, although correct, did not appear
as enough suitable and reliable for practical applications.

A particular attention to the “strengtheness of the first parameter f|
has been paid in this paper. The choice of optimal values of @, and b, — the
task set at the beginnining of this paper — has been solved successfully.
However, although the results obtained by means of a,=0.4408 and b,=5.7140
are extraordinary good, the procedure concerning the choice of them should
be subjected to a more rigorous mathematical analysis.*

The same can be said for the convergence of the solution proposed, for
which unfortunately an exact mathematical procedure has not been developed.
In absence of such a possibility, we carried out here a consideration of so
named physical convergence on the basis of the behaviour of first three para-
meters of the set f; (f,, f», f), approaching the separation point. A conclu-
sion could be drawn that the physical convergence is with a very suitable
speed of approaching to the exact solution exists. The convergence is getting
worse with the slenderness of the contour, as expected, but this is not of
special importance from the practical point of view, because the one-parameter
solution is qualitatively very stable.

It should be emphasized at the end that the main goal of this paper
was of methodological character — to affirm and possibly improve the modern
parameter method by Loitsianskii [3] on the example of simple two-dimensio-
nal steady boundary layer of incompressible flow. As mentioned before, this
method has been already successfully extended to the more complex models
of the boundary layer, as for example for compressible flows, for power law
nonnewtonian flows and MHD flows. It can be interesting, however, for other
problems that reduce to nonlinear differential equations of parabolic type also,
as for example for the problem of nonlinear conduction of heat.

The author wishes to acknowledge the gratitude to the author’s collea-
gues: Dr. B. Cijan, Dr. V. DPordevi¢, Dr. Z. BoriCi¢, Dr. T. ASkovi¢ and
M. Sc. P. Vukoslavéevi¢ in their generous assistance in the tabulating of uni-
versal functions, technical preparations and translation into Englisch language.
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BEITRAG ZU DEN UNIVERSELLEN LOSUNGEN VON
GRENZSCHICHTTHEORIE

Viktor N. Saljnikov
Zusammenfassung

Durch Einfithrung zweckmiBiger Transformationen und der seitens Loit-
sianskii [3] definierten Formparametermenge in dem Ausgangssystem von Di-
fferentialgleichungen der laminaren ebenen und stationdren Grenzschicht hat
man die universelle Gleichung betrachtetes Problems gewonnen. Die entsprech-
ende auf der Rechnenanlage vermittels numerischer Integration berechnete
und tabulierte Losung, nimlich, kann man bei der Betrachtung beliebiges spe-
ziellen Stromungfalles inkompressibler Fliissigkeit leicht beniitzen. Die bei der
Anwendung der urspriinglichen Methode von Loitsianskii unvermeidliche nacht-
rigliche Integration der Impulsgrenzschichtgleichung, in diesem Falle Gberfliissig
wird, was die Beniitzung dieses Verfahrens im Ingenieurpraxis wesentlich
vereinfacht. Aus der Betrachtung der Kreiszylinderumstrémung folgt, dal schon
in der einparametrigen Néherung erhaltene Werte sehr nah zu exakten liegen.
Man erblickt dabei, im Vergleich zur entsprechenden einparametrigen Ldsung
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von Loitsianskii die gewisse Besserung erhaltener Resultate. Zu diesem Schluf3
kam auch lIvanovié¢ [2] bei der Betrachtung der Zylinderumstromung elliptisches
Querschnitts fiir verschiedene Verhiltnisse der Halbachsen. Die durch Mirgaux
[4] gewonnene Losung derselben universellen Gleichung in zweiparametriger
Niherung hat die weitere Resultatenbesserung ermoglicht. Damit ist die be-
friedigende Konvergenzgeschwindigkeit, des in dieser Arbeit entwickelten Ver-
fahrens nachgewiesen. Man soll noch bemerken, daB es schon auf die kompli-
zierteren physikalischen Grenzschichtmodelle mit Erfolg iibertragen ist. Nam-
lich, auf die: kompressible Stromung (Saljnikov / Bori¢i¢ [10]), Stromungen
von nichtnewtonschen Potenzgesetzfliissigkeiten (Saljnikov / Puki¢ [11]) und
magnetohydrodynamischen Strémungen (Saljnikov /| Bori¢i¢ [12]).

[MPUJIOr YHUBEP3AJIHUM PEWEHBUMA TEOPHUJE
T'PAHUYHOI' CJIOJA

Burxuwiop H. CamnHukos
Pezume

VBoljereM CBPCHCXOIHHX TpaHChopMamuja M CKyna napameTapa Jlojujan-
ckor [3] y moueTHM cucTeM AudepeHunjaIHnX jeHAYMHA JJAMMHAPHOT PaBaHCKOT
CTAIMOHAPHOT TPAaHMYHOT cjoja AoOMjeHa je yHMBEpP3aJaHa jenHaynHa. IbeHo
pellierbe, HaAUMeE, CPauyHATO HYMEPHUYKOM MBTErpalMjoM Ha eJIEKTPOHCKOM pa-
yyHapy M cpeheHo y TaGmMumama, Moxe €€ JIaKO KOPHCTUTH NpH peluaBaiby Ma
KOr CMELMjaHOr Clyyaja CTpyjalmba HeCTHIUBMBOT (uynna. JTonyHCcka MHTErpa-
uMja MMMyJICHE jeAHAYnHEe IPAHUYHOL CJI0ja HEONMXOHA KOJA NpHMEHE npBOOUTHE
metoze Jlojujanckor [3] y oBOM Ciyuajy HOCTaje CyBHMIIHA, LITO OMTHO YIpOLL-
hasa kopuiuheme OBOI NOCTYNKA Y MHXKEHEPCKO] NPAKCH. M3 pa3maTpama OI-
cTpyjaBamba UWIMHAPA KPY/KHOT TNpeceka crenyje, na ce Beh y jeasomnapame-
TapcKoM TpUOIMKEHY TOCTHXKY BPEAHOCTH OJIMCKE TayHHM. Ilpu TOME CE ¥
nopehemwy ca oaroBapajyhum jegHONapaMETapCcKUM pelICHEM Jlojujanckor yo-
yaBa M3BECHO M0GOBIIAIbE H0OMjeHnx pesyntaTa. [o OBOr 3ak/bydka je NOLIA0
u Mpanosuh [2] npu pa3MaTpamy ONCTpyjaBama UWIMHIApA TIpEceKa eJIunce
3a pa3MuMTE OJHOCE HEHUX Tmosyoca. Pemerme ucTe yHHBEp3ajHE jeHaYnHe
y /IBOMapaMeTapckoM MNpuOIKemy nobujeno on crtpaHa Muproa [4], omo-
ryhuso je mambe nobosbliatbe pesyJrTata. Tume je morBphena 3amoBosbaBajyha
6p3uHa KoHBepreHumje, kojy obe3behyje mocrynak pa3BHjeH y oBOM pany. Tpe-
Ga jour HamoMeHyTH, JAa je OH Beh ca ycnexom MNPOIIMPEH W Ha CJIOKEHH]E
dbusuuke Momene rpaumuHor cioja. Hawmme, Ha cTpyjama CTHLUIbHBOT (uiynna
(CasuukoB u Bopuuuh [10]), cTpyjama HEeHbYTHOBCKHX CTENEHHX TEHHOCTH (Camn-
uukoB u bykuh [11]) ¥ MarHeToXuApOAMHAMHUYKA crpyjawa (CamuukoB 1 bo-
puynh [12]).
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