TEORIJSKA I PRIMENJENA MEHANIKA 4, pp. 106—114, 1978.

SOLVING A MIXED BOUNDARY VALUE PROBLEM
FOR THE BENDING OF A PLATE

Bogdan Krusié

1. Introduction

Let the plate D of thickness 24 be loaded in D continuously with the
densities of force F,(¥) and couple M, ({)+iM,({) on the elementdZdxn. If
notations
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F
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and
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are introduced, then the following equations for the deflection w can be ob-
tained [1]:
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where @, (z) and y,(z) in D are holomorphic functions if D is a simply con-
nected domain. In the above equation v is Poisson’s number and w is Lame’s
coefficient. All the notations and introductions of functions are adapted to the
paper [2]. Further, the next expression will be important
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If the bending is treated according to Kirchhoff’s theory, we also get

12 o B . |
__—(l_v)hzf[G+lfHds}dC— m(x+1)£f[(z OF®+M®Q)]

Z—EW)Hn(z—C)(?wZ)[z—C)(C)+ |

z_

-1n(z-t)dzdn+ff[zF(c)+
8

(1—3) +M(cn}dadn+[—xcpo(z)+z%' @+ V@] -iKz—K,

where G is the bending couple and H the generalized shear force per unit of
the plate cross-section,

34w
W= s
1—v

K is an arbitrary real and K an arbitrary complex constant. By using the nota-
tions ¢(z), @,(2) and ¢ (z) from [3], the equations (1—2) and (1—3) can be
shortened:

‘(’)—’;’= —%;—:{ti(z)+zcﬁl(z)+§b(z)1+
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+P @1 +[-79, (D +29) @)+ @] +i Kz +K,.

2. The definition of a mixed boundary value problem for the
bending of a circular plate

Let the boundary curve C of circle D be divided by 2 n points into the

sections
[aI’ bl]’ [bl’ 02], [aZ’ bz]s R [am bn]9 [bm a}]'
Then we write

[bi, ap+]

k=
k=1

k=n
C,=JI[a,b] and C,=
k=1
where a,,,=a,. Let the boundary value problem be expressed in this way: let
the plate be clamped on the union of sections C, and the boundary curve C be
free on the union of sections C, (unloaded), consequently:

2—1) w=0, 91:0, zeC,
or

(2-2) G=0, B=0, 2&0C;
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With the above two conditions and at the given functions 0 (2), 9,(2)
and ¢ (z) the deflection w should be determined. Mathematically the above
two equations, considering (I—2) and (1—3), can be expressed in the fol-
lowing way:

2—3) @+, +I@) +lp(D+29) @)+ U ()* =0, zEC,

[-%0 @) +29, @D+ @1 +[-x9 (D + 20 @ +
(2—4)
+¢, (D =iKz+ K|, z€C,.
The constants K and K, are (except on one section [by,, ax,+1] Where
they can be taken as equal to 0) still unknown and not arbitrary any more. So
they will still have to be determined for each section separately. In addition,

the fact that the condition (2—3) is not equivalent to the condition (2—1I)
if n>1, will also have to be considered.

3. The course of the solving of the boundary value problem

First let for loading of the plate in the domain D the validity of the fol-
lowing equations be required:

G—1) [ F@dgdan=0
D
(3—2) [ M ©—CF©1dEdn=o0.
D

Now the functions f, (2), f,(2), f5(2) and f, are introduced similarly as it is
done in [3]. Let us then consider the characteristics of these functions for
large values of |z|. Consequently, the equations (2—3) and (2—4) can be
written es below:
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Now let be

3—5) F,(2)= —xzfl(z)—xf2(2)+250’(—L—)+$o(%)—;l z, |z|>1,
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(3—0)

where «, has the following meaning:
3—7) Py (2) =ty + &, 2+ O (2%).

F,(z) is holomorphic outside D and bounded at the infinity, but F,(2)
is holomorphic inside D. Out of (3—4) it follows that

08— Fi(2)-F; (2)=iK;z+K,,, z€C,.

It shorter notation is introduced

(3—9) g { CHEr 2l amh ISis
0 , 2EC,
then (3—38) yields
(3—10) F(2)= 1 g(®) dC+F* @
2 wi C—z
C;

where F*(z) is a regular function everywhere in the closed plane, except per-
haps on C,.
Further there is still:
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The following notations are further used

/1y —
(G—13) d>,(z)=zf,(z)+f2(z)+z<p0(7)+al»o(iz)—aoz 2]>1
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o) {2 (o) )

— (D) — @, 2, |z|<1.

and

(3—14)

The first function is holomorphic outside D and bounded in the infinity
while the second one is holomorphic inside D. Obviously there is still

G—15) ®, (2)=F, (2) + (x+ 1) 12, @) + £, ]
and
. whlf 1% =1\ =1
@@= - FO+ [ zfl(z) ﬁ(z) fz(z)+
(3—16)

L))

Considering (3—12) and the last two equations, the equation (3—3) can
be written:

(3—17) x F*= (2)+ F** (2)=4(2) z&C,

where the notations were used:

A(2)= (e + 1)[—F0 (z)+|:—zfl(—i-)—fl’ (LZ)_];' (%)Hj(.l_z)_
(3—18)
()| @ @r}. =ec.

In the equation (3—17), outside C,, F*(z) is always a regular function.
From [4] we understand that is obtained in the following way:

%o (@) A dg
2mi 23 ©-C-2
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where there is

k=n
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and still due to the required regularity in z= 00

k
(3—22) f“‘(f)c at=0, 0<k<n-2,
%o (©
C,
when n= 1, the above conditions are not present.

Let us see if the presented problem is solvable. If K, =0 and_K“ =0 are
taken, then the constants K; with 2<I<n, Re[K,;] and Im[K, ] with 2<I/<n
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are determined by 3n—3 real numbers. Together with Re [«,] and Im [«,] there
are 3n—1 real numbers, which should be determined. On the other side, by
equating the coefficients of the first power of z on both sides in equations
(3—22) and (3—6) we obtain 2n equations in the real domain for the un-
known numbers. Additional n—1 equations result from the relations:

(3—23) W) —w (@) =w, (@) —wy(x,)  2<k<n

where w means the actually calculated deflection and w, the one that is re-
quired for a given point. Here «, is an arbitrary point on [a, b;], 2<k<n
and «, an arbitrary point on [a,, b,].

Consequently, the number of equations corresponds to the number of
unknown quantities. With zero loadings the solving of the following problem
is known: ¢,(2)=0, {,(2)=0 and K,=K,;=0, 1<I/<n, thus also «, =0. As
at that time the equation system is homogeneous, this means that it is a Cra-
mer’s system. Arranging the equation system according to the usual manner,
we can easily see that the coefficients with the unkown quantities are inde-
pendent from loading. It means that the equation system for determination of
unknown quantities is at an arbitrary loading uniquely solvable.

Finally (3—6) yields

o (o (1) ) AL

(3—24)

+£ (iz) + Fy(2)+ F* (2)
and (3—5) yields
st s a{ ] O r( )

z z z
In the case n=1 there are no conditions for form (3—22) and (3—23).

The only constants that have to be determined are Re[«,] and Im[«,]. If now
F,(z)=0 is considered, «, can be calculated out of the equation:

(3—25)  F* (0)=xa,— o, + [ [ [EM @)+ LM Q) - & F Q) dE dn,
D

However, «, is contained also on the left side of the equation. The equa-
tion has a unique solution.
The unfulfilment of the equations (3—1) and (3—2) has no essential

meaning. At arbitrary values of the left sides of these equations the problem
has a unique solution.

4. Some remarks on solving the boundary-value problem considering
the improved theory of the bending of a plate

In this case, when formulating the same boundary value problem, the
equation (2—4) can be taken while the equation (2—3) changes. In the first
bracket (2—3) on the left only the boundary values of holomorphic functions
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prove to appear while in the second bracket the member ag,” (z) where o is
a given constant has to be joined additionally. Treating the case analogously
with the preceding one, we come to the same equation (3—8) and to the
changed form of equation (3—17) as below:

(“4—1) xF*~ () +[F* (D +a F* " =4,(d, zEC,

where the boundary values of (known) holomorphic functions only and con-
stants K, K,;, 1<<I<n, as well as «, appear in A (z). This equation is in
comparison to the equation (3—17) far more complicated, however, it can be
solved by means used for solving singular integral equations with Cauchy’s
kernel in a generalized form [4], [5]. At the required regularity of function
F*(z) in z= o0 the conditions analoguous to those in (3—22) and (3—23) have
still to be fulfilled. Fulfilling these conditions it is possible to determine uniquely
the constants appearing in A,(z). For the expression of ¢,(z) and {,(z) the
equations (3—24) and (3—25) are again obtained.

The course of the solving of equation is not given here in detail, be-
cause the general function form A (z) it does not offer an elementary ex-
pression for the solution F*(z) if C, is not the entire circle C. From (4—1)
it can be concluded that the boundary value problems, considering the impro-
ved theory of bending, are mathematically far more difficult than when the
same problems are solved by Kirchhoff’s theory. It is therefore more advi-
sable in practice to content oneself with some approximate solution of the
equation (4—1) than to follow the general method of N. P. Vekua. This can
be done if we write the equation (4—1) in the form as below:

xF*—(z)+F*+(z)sAo(z)uocF*”(z)’f, z&C,.
Considering (3—19) it follows:

%@ [ AQ-aF" @
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1

At low values of & an approximation will be obtained by substituting
the expression F*''({)+ for the expression F,*'(§)* if F,*(z) means the solu-
tion of equation (4—1) at a=0.

Thus an elementarily expressed approximation is reached:

L@ [AQ-2F Q"
2mi J i () €-2)

Cy

(4—2) F*(2)=

(4—3) F* (2)~

5. Comparison of the solved boundary value problem with the
analogous boundary value problem of a plate, unloaded in D

For a plate that is in D unloaded, that s, if F ()=M %) =0, L&D we have

(5—1) 2(D=9,@)=9@=0
(5—2) L@=£,@=/@=f,(2)=0
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and the boundary value conditions are not homogeneous any more:

16w 0
(5—3) 1_t'£=hl(z)’ 2EC,
12 (r. _
(5—9) P )hzf[aﬂ Hds]dt=h2(z)+1K,z+Kl,, PEE,
—v

because h,(z) and h,(z) are not equal to zero. In this case, on the left sides
of these conditions only the boundary values of the functions @,(z), ¢, (2)
and {, (z) are to be found. Since the right sides as well can be treated as a
linear combination of the boundary values of analytical functions, for example:

(5—3) h@ =g @81 @, g@)=—— [12OL
2ri {—z

C,
and similarly for A, (z), then it can be seen that it is possible to transform
the problem (5—3)—(5—4) into the same form of solving as the afore-treated
problem. The equations (3—38) and (3—17) are again obtained and with the
improved theory too (4—1). In the same way also the treating of the boun-
dary value problem for a plate, loaded in D with unhomogeneous boundary
value conditions also takes exactly the same course, which can be easily under-
stood. Consequently, it can be concluded that, in solving the boundary value
problem by the discussed method, a load in D does not represent any addi-
tional difficulty in mathematical sense.
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LOSUNG EINER GEMISCHTEN RANDWERTAUFGABE
DER PLATTENBIEGUNG

Bogdan Krusié
Zusammenfassung

In diesem Aufsatz wird eine Methode zur Losung einer gemischten Rand-
wertaufgabe der Plattenbiegung behandelt. Die Platte is stetig mit Kraft und
Moment belastet. Es wird festgestellt, dass die Behandlung dieser Randwert-
aufgabe im mathematischen Sinne zu wesentlichen Schwierigkeiten fiihrt, wenn
anstatt der Kirchhoffs Theorie die verbesserte Theorie gebraucht wird.

8 Mehanika 4
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RESITEV NEKEGA MESANEGA ROBNEGA PROBLEMA
UPOGIBA PLOSCE

Bogdan Krusié
Povzetek

V tem &lanku je obravnavana neka metoda reSevanja meSanega robnega
problema upogiba tanke ploide, ki je obremenjena zvezno s silo in momentom.
Pokazano je, da vodi obravnava takega robnega problema do bistvenih kom-
plikacij v matematinem smislu, e uporabimo namesto Kirchhoffove teorije
posploseno teorijo upogiba.
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